1.	(a)	(i)	Gradient of $BC = \underline{\text{increase in } y}$ increase in x		M1			
		(ii)	Gradient of $BC = -4$ (or each A correct method for finding the equation of for BC M1			A1 ate's gradient		
		(iii)	Equation of BC : $y-(-5)=-4(x-6)$ (or (f.t. candidate's graded Equation of BC : $4x+y-19=0$ (but $4x+y-19=0$) (but $4x+y-19=0$) (but $4x+y-19=0$))	A1 A1		
			A correct method for finding the equation of for AD (M1) (to be awarded only if corresponding M1 is Equation of AD : $y-4 = \frac{1}{4}(x-8)$	(M1) onding M1 is not awarded in part (ii))				
		Note:	(f.t. candidate's gr Total mark for part (a) is 7 marks	radient of <i>I</i>	BC)	A1		
	(b)	An atte $x = 4, y$	empt to solve equations of BC and AD simultane $c = 3$ (convincing)	eously	M1 (c.a.o.)	A1		
	(c)	A correspond $BD = \sqrt{\frac{1}{2}}$	eet method for finding the length of <i>BD</i> 68		M1	A1		
	(<i>d</i>)	A correct $E(0, 2)$	ect method for finding E		M1	A1		
2.	(a)	$\frac{2+5\sqrt{7}}{4+\sqrt{7}}$ Numer:	$\frac{7}{4} = \frac{(2+5\sqrt{7})(4-\sqrt{7})}{(4+\sqrt{7})(4-\sqrt{7})}$ ator: $8-2\sqrt{7}+20\sqrt{7}-35$			M1 A1		
		Denom	inator: $16-7$ $7 = -3 + 2\sqrt{7}$ (c.	.a.o.)	A1	A1		
		If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4 + \sqrt{7}$						
	(b)		$6\sqrt{10}$ $\sqrt{5})^3 = 5\sqrt{10}$ $\sqrt{8} = 2\sqrt{10}$			B1 B1 B1		
		√360 −		(c.a.o.)	B1			

3.	(a)	$\frac{dy}{dx} = 4x - 10$ (an attempt to differentiate, $\frac{dy}{dx} = 4x - 10$ (an attem			
			A 1		
		dx			
		Use of gradient of normal = -1	m1		
		candidate's value for <u>dy</u>			
		dx			
		Equation of normal at P: $y - (-5) = -\frac{1}{2}(x - 3)$ (or equivalent)			
			A 1		
		dx			
	(b)	An attempt to put candidate's expression for $dy = 0$			
	(-)	$\frac{dx}{dx}$			
		<i>x</i> -coordinate of $Q = 2.5$			
		(f.t. one error in candidate's expression for \underline{dy}) A1			
		$\frac{1}{2}$			

4. (a)
$$2(x-4)^2-40$$
 B1 B1 B1

(b) least value =
$$-20$$
 (f.t. candidate's value for c) B1
 x -coordinate = 4 (f.t. candidate's value for b) B1

5. (a)
$$(1+2x)^7 = 1 + 14x + 84x^2...$$
 B1 B1 B1

(b)
$$(1-4x)(1+2x)^7 = 1-4x+14x-56x^2+84x^2$$

Constant term and terms in x B1
Terms in x^2 B1
 $(f.t. candidate's expression in (a))$
 $(1-4x)(1+2x)^7 = 1+10x+28x^2$ (c.a.o.) B1

An expression for $b^2 - 4ac$, with at least two of a, b, c correct 6. (a) (i) $b^2 - 4ac = (4k+1)^2 - 4 \times (k+1) \times (k-5)$ **A**1 Putting $b^2 - 4ac = 0$ m1 $4k^2 + 8k + 7 = 0$ (convincing) **A**1 An expression for $b^2 - 4ac$, with at least two of a, b, c correct (ii) (M1)(to be awarded only if corresponding M1 is not awarded in part (i)) $b^2 - 4ac = 64 - 112 (= -48)$ **A**1 $b^2 - 4ac < 0 \Rightarrow$ no real roots **A**1 Note: Total mark for part (a) is 6 marks

(b) Finding critical values $x = -\frac{3}{4}$, x = 3 B1

A statement (mathematical or otherwise) to the effect that $x \le -\frac{3}{4}$ or $3 \le x$ (or equivalent)

(f.t. candidate's derived critical values)

B2

Deduct 1 mark for each of the following errors

the use of strict inequalities
the use of the word 'and' instead of the word 'or'

- 7. (a) $y + \delta y = 5(x + \delta x)^2 + 8(x + \delta x) 11$ B1 Subtracting y from above to find δy M1 $\delta y = 10x\delta x + 5(\delta x)^2 + 8\delta x$ A1 Dividing by δx and letting $\delta x \to 0$ M1 $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 10x + 8$ (c.a.o.) A1
 - (b) $\underline{dy} = 6 \times \underline{2} \times x^{-1/3} + 5 \times -2 \times x^{-3}$ (completely correct answer) B2 \underline{dx} 3 (If B2 not awarded, award B1 for at least one correct non-zero term)
- 8. Attempting to find f(r) = 0 for some value of r M1 $f(-1) = 0 \Rightarrow x + 1 \text{ is a factor}$ A1 $f(x) = (x + 1)(8x^2 + ax + b) \text{ with one of } a, b \text{ correct}$ M1 $f(x) = (x + 1)(8x^2 10x + 3)$ A1 f(x) = (x + 1)(2x 1)(4x 3) (f.t. only $8x^2 + 10x + 3$ in above line) $x = -1, \frac{1}{2}, \frac{3}{4}$ (f.t. for factors $2x \pm 1, 4x \pm 3$) A1

9. (a)

Concave

down curve with y-coordinate of maximum = 4

B1

B1

x-coordinate of maximum = -3Both points of intersection with x-axis

B1

(*b*)

Concave down curve with y-coordinate of maximum = 4 B1

x-coordinate of maximum = -1

Both points of intersection with *x*-axis

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)

10. (a) (i)
$$(2x \times x) + (2x \times y) + (2x \times y) + (x \times y) + (x \times y) + (x \times y) = 108$$
 M1
 $6xy + 4x^2 = 108 \Rightarrow xy = 18 - 2x^2$ (convincing) A1
(ii) $V = 2x \times x \times y = 2x(xy) \Rightarrow V = 36x - 4x^3$ (convincing) B1

(b)
$$\frac{dV}{dx} = 36 - 3 \times 4x^{2}$$

$$Quadrate V = 36 - 3 \times 4x^{2}$$

$$Quadrate V = 3$$

$$Quadrat$$

Stationary value of V at x = 3 is 72 (c.a.o) A1 A correct method for finding nature of the stationary point yielding a maximum value (for 0 < x) B1