1. $1 \quad 1.414213562$
$1.25 \quad 1.341640787$
$1 \cdot 5 \quad 1 \cdot 290994449$
$\begin{array}{llll}1.75 & 1.253566341 & \text { (5 values correct) B2 }\end{array}$
$2 \quad 1 \cdot 224744871 \quad$ (3 or 4 values correct) B1
Correct formula with $h=0.25$
$I \approx \underline{0.25} \times\{1 \cdot 414213562+1 \cdot 224744871+$
$2 \quad 2(1 \cdot 341640787+1 \cdot 290994449+1 \cdot 253566341)\}$
$I \approx 10 \cdot 41136159 \div 8$
$I \approx 1.301420198$
$I \approx 1.301 \quad$ (f.t. one slip) A1
Special case for candidates who put $h=0 \cdot 2$
$1 \quad 1.414213562$
$1 \cdot 2 \quad 1 \cdot 354006401$
$1 \cdot 4 \quad 1 \cdot 309307341$
$1 \cdot 6 \quad 1 \cdot 274754878$
$1 \cdot 8 \quad 1 \cdot 247219129$
$2 \quad 1 \cdot 224744871 \quad$ (all values correct) B1
Correct formula with $h=0 \cdot 2 \quad$ M1
$I \approx \frac{0 \cdot 2}{2} \times\{1 \cdot 414213562+1 \cdot 224744871+2(1 \cdot 354006401+1 \cdot 309307341+$
$I \approx 13 \cdot 00953393 \div 10$
$I \approx 1.300953393$
$I \approx 1 \cdot 301$
(f.t. one slip)

Note: Answer only with no working earns 0 marks
2. (a) $\quad 12\left(1-\sin ^{2} \theta\right)-5 \sin \theta=10 \quad$ (correct use of $\cos ^{2} \theta=1-\sin ^{2} \theta$) $\quad \mathrm{M} 1$ An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta+b)(c \sin \theta+d)$, with $a \times c=$ coefficient of $\sin ^{2} \theta$ and $b \times d=$ constant m1
$12 \sin ^{2} \theta+5 \sin \theta-2=0 \Rightarrow(4 \sin \theta-1)(3 \sin \theta+2)=0$
$\Rightarrow \sin \theta=\underline{1}, \sin \theta=-\underline{2}$
(c.a.o.) A1
$\theta=14.48^{\circ}, 165 \cdot 52^{\circ}$
B1
$\theta=221.81^{\circ}, 318.19^{\circ}$
B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\sin \theta=+$, - , f.t. for 3 marks, $\sin \theta=-$, - , f.t. for 2 marks $\sin \theta=+,+$, f.t. for 1 mark
(b) $2 x=-58^{\circ}, 122^{\circ}, 302^{\circ}$ (at least one value) B1 $x=61^{\circ}, 151^{\circ}$, (both values) B1
Note: Subtract a maximum of 1 mark for additional roots in range, ignore roots outside range.
(c) $\sin \phi+2 \sin \phi \cos \phi=0$ or $\tan \phi+2 \tan \phi \cos \phi=0$ or $\sin \phi\left(\frac{1}{(\cos \phi}+2\right)=0$
$\sin \phi=0($ or $\tan \phi=0), \cos \phi=-\frac{1}{2} \quad$ (both values) A1
$\phi=0^{\circ}, 180^{\circ} \quad$ (both values)
A1
$\phi=120^{\circ}$ A1
Note: Subtract a maximum of 1 mark for each additional root in range for each branch, ignore roots outside range.

Special Case:

No factorisation but division throughout by $\sin \phi($ or $\tan \phi)$ to yield
$1+2 \cos \phi=0 \quad$ (or equivalent)
$\phi=120^{\circ}$
3. (a) $\frac{1}{2} \times A C \times 11 \times \sin 110^{\circ}=31$
(substituting the correct values in the correct places in the area formula) M1
$A C=5.998 \quad(A C=6)$
$B C^{2}=6^{2}+11^{2}-2 \times 6 \times 11 \times \cos 110^{\circ}$
(substituting the correct values in the correct places in the cos rule,
(f.t. candidate's value for $A C$)
$B C=14 \cdot 22 \quad$ (f.t. candidate's value for $A C$)
(b) $\frac{\sin X Z Y}{2}=\frac{\sin 60^{\circ}}{2 \sqrt{3}-1} \quad \begin{aligned} & \text { (substituting the correct values in the } \\ & \text { correct places in the sine formula) }\end{aligned}$ $\begin{array}{ll}\sin X Z Y & =\underline{2 \times \sin 60^{\circ}} \\ 2 \sqrt{3}-1 & \mathrm{~m} 1\end{array}$
$\sin X Z Y=\frac{6+\sqrt{3}}{11}$
4. $3 \times \frac{x^{3 / 2}}{3 / 2}-6 \times \frac{x^{-3}}{-3}-x+c \quad$ (-1 if no constant term present)

B1, B1, B1
5.
(a) $S_{n}=a+[a+d]+\ldots+[a+(n-1) d]$
(at least 3 terms, one at each end) B1
$S_{n}=[a+(n-1) d]+[a+(n-2) d]+\ldots+a$
Either:
$2 S_{n}=[a+a+(n-1) d]+[a+a+(n-1) d]+\ldots+[a+a+(n-1) d]$
Or
$2 S_{n}=[a+a+(n-1) d]+\quad(n$ times $) \quad$ M1
$2 S_{n}=n[2 a+(n-1) d]$
$S_{n}=\underline{n}[2 a+(n-1) d] \quad$ (convincing)
A1
(b) $\quad \underline{n}[2 \times 4+(n-1) \times 2]=460$

2
Either: Rewriting above equation in a form ready to be solved $2 n^{2}+6 n-920=0$ or $n^{2}+3 n-460=0$ or $n(n+3)=460$
or: $\quad n=20, n=-23$
A1
$n=20$
(c.a.o.) A1
(c) $\quad a+4 d=9$

B1
$(a+5 d)+(a+9 d)=42$
B1
An attempt to solve the candidate's two linear equations
Simultaneously by eliminating one unknown
$d=4$
(c.a.o.) A1
$a=-7$
(f.t. candidate's value for d)

A1
6.
(a) $r=-0.6$

B1
$S_{\infty}=\frac{40}{1-(-0 \cdot 6)}$
M1
$S_{\infty}=25$
(c.a.o.) A1
(b)
$\begin{array}{ll}\text { (i) } \quad a r^{3}=8 & \text { B1 } \\ a r^{2}+a r^{3}+a r^{4}=28 & \text { B1 }\end{array}$
An attempt to solve these equations simultaneously by eliminating $a \quad$ M1

$$
\frac{r^{3}}{r^{2}+r^{3}+r^{4}}=\frac{8}{28} \Rightarrow 2 r^{2}-5 r+2=0 \quad \text { (convincing) A1 }
$$

(ii)

$$
r=0.5 \quad(r=2 \text { discarded, c.a.o. }) \quad \text { B1 }
$$

$$
a=64 \text { (f.t. candidate's value for } r \text {, provided }|r|<1 \text {) B1 }
$$

7.

$$
\begin{array}{ll}
\text { Area }=\int_{\int}^{3}\left(3 x+\frac{x^{3}}{5}\right) d x & \text { (use of integration) } \\
\frac{3 x^{2}}{2}+\frac{x^{4}}{4 \times 5} & \text { (correct integration) } \quad \text { B1, B1 } \\
\text { Area }=(27 / 2+81 / 20)-(3 / 2+1 / 20) & \text { (an attempt to substitute limits) }
\end{array}
$$

Area $=16$
(c.a.o.) A1
8. (a) Let $p=\log _{a} x$

Then $x=a^{p} \quad$ (relationship between \log and power) B1 $x^{n}=a^{p n}$ (the laws of indices) B1
$\therefore \log _{a} x^{n}=p n$
(relationship between log and power)
$\therefore \log _{a} x^{n}=p n=n \log _{a} x \quad$ (convincing) B1
(b) Either:
$(2 y-1) \log _{10} 6=\log _{10} 4$
(taking logs on both sides and using the power law) M1
$y=\underline{\log }_{\underline{10}} \underline{4+\log _{\underline{10}} \underline{6}}$
$y=0.887 \quad$ (f.t. one slip, see below)
Or:
$2 y-1=\log _{6} 4 \quad$ (rewriting as a log equation) M1
$y=\underline{\log }_{6} 4+1 \quad$ A1
$y=0.887$
(f.t. one slip, see below)

A1
Note: an answer of $y=-0 \cdot 113$ from $y=\underline{\log _{10}} \underline{4} \underline{2} \log _{10} \underline{6}$
earns M1 A0 A1
an answer of $y=1.774$ from $y=\underline{\log _{10}} \frac{4+\log _{10} \underline{6}}{\log _{10} 6}$ earns M1 A0 A1
(c) $\quad \log _{a} 4=\frac{1}{2} \Rightarrow 4=a^{1 / 2}$ (rewriting log equation as power equation)
$a=16$
9. $(a) \quad A(4,-1)$

B1
A correct method for finding radius M1
Radius $=\sqrt{ } 10$
(b) (i) Either:

An attempt to substitute the coordinates of P in the M1
equation of $C \quad$
Verification that $x=7, y=-2$ satisfy equation of C and hence
P lies on C
A1
Or:
An attempt to find $A P^{2}$ M1
$A P^{2}=10 \Rightarrow P$ lies on $C \quad$ A1
(ii) A correct method for finding Q M1 $Q(1,0)$
(f.t. candidate's coordinates for A) A1
(c) An attempt to substitute $(2 x-4)$ for y in the equation of the circle M1 $x^{2}-4 x+3=0 \quad\left(\right.$ or $\left.5 x^{2}-20 x+15=0\right)$ A1 $x=1, x=3$ (correctly solving candidate's quadratic, both values) A1 Points of intersection are $(1,-2),(3,2)$
10. (a) (i) $L=R \theta-r \theta$

B1
(ii) $K=\frac{1}{2} R^{2} \theta-\frac{1}{2} r^{2} \theta$ B1
(b) An attempt to eliminate θ

Use of $R^{2}-r^{2}=(R+r)(R-r)$
$r=\frac{2 K}{L}-R$

