C2

Solutions and Mark Scheme

Final Version

1. 1 1.414213562 $1 \cdot 1$ 1.337908816 1.21.2489996 1.3 1.144552314 (5 values correct) B2 (3 or 4 values correct) 1.4B1 1.019803903 Correct formula with h = 0.1M1 $I \approx \underline{0.1} \times \{1.414213562 + 1.019803903 +$ 2 $2(1\cdot337908816 + 1\cdot2489996 + 1\cdot144552314)$ $I \approx 0.494846946$ $I \approx 0.495$ (f.t. one slip) A1 **Special case** for candidates who put h = 0.81 1.414213562 1.081.35410487 1.16 1.286234815 1.241.209297317 1.321.121427662 1.41.019803903 (all values correct) B1 Correct formula with h = 0.08M1 $I \approx \underline{0.08} \times \{1.414213562 + 1.019803903 + 2(1.35410487 + 1.286234815 +$ 2 $1 \cdot 209297317 + 1 \cdot 121427662)$ $I \approx 0.495045871$ $I \approx 0.495$ (f.t. one slip) A1

- $3 7\cos\theta = 6(1 \cos^2\theta)$ (correct use of $\sin^2 \theta = 1 - \cos^2 \theta$) M1 2. *(a)* An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$, with $a \times c = \text{coefficient of } \cos^2 \theta$ and $b \times d = \text{constant}$ m1 $6\cos^2\theta - 7\cos\theta - 3 = 0 \Rightarrow (3\cos\theta + 1)(2\cos\theta - 3) = 0$ $\Rightarrow \cos \theta = -1$, $(\cos\theta = \frac{3}{2})$ A1 (c.a.o.)3 $\theta = 109.47^{\circ}, 250.53^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range from $3\cos\theta + 1 = 0$, ignore roots outside range. $\cos \theta = -$, f.t. for 2 marks, $\cos \theta = +$, f.t. for 1 mark $2x + 45^\circ = 35^\circ, 215^\circ, 395^\circ$ *(b)* B1 (one value) $x = 85^{\circ}, 175^{\circ}$ B1, B1 Note: Subtract (from final two marks) 1 mark for each additional root
 - (c) Correct use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ (o.e.) M1

in range, ignore roots outside range.

$$\theta = 194.48^{\circ}$$
 A1

$$\theta = 345.52^{\circ}$$
 A

Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.

3. (a)
$$x^2 = 8^2 + (x+2)^2 - 2 \times 8 \times (x+2) \times \cos 60^\circ$$

(correct use of cos rule) M1
 $x^2 = 64 + x^2 + 4x + 4 - 8x - 16$
 $x = 13$ (f.t. only $x = 21$ from + 16 in the line above) A1

(b) $\frac{\sin ACB}{8} = \frac{\sin 60^{\circ}}{13}$ (substituting correct values in the correct places in $ACB = 32 \cdot 2^{\circ}$ (f.t. candidate's derived value for x) A1

4. *(a)* At least one correct use of the sum formula M1 $8 \times [2a + 7d] = 124$ 2 $20 \times [2a + 19d] = 910$ (both correct) A1 An attempt to solve the candidate's two equations simultaneously by eliminating one unknown M1 d = 5(c.a.o.) A1 a = -2(f.t. candidate's value for d) A1 -2 + 5(n-1) = 183(f.t. candidate's values for a and d) M1 *(b)* n = 38(c.a.o.) A1

5. (a) $S_n = a + ar + \dots + ar^{n-1}$ (at least 3 terms, one at each end) B1 $rS_n = ar + \dots + ar^{n-1} + ar^n$ (multiply first line by r and subtract) M1 $(1 - r)S_n = a(1 - r^n)$ $S_n = \frac{a(1 - r^n)}{1 - r}$ (convincing) A1

(b) Either:
$$a(1-r^4) = 73.8$$

Or: $a + ar + ar^2 + ar^3 = 73.8$ B1

$$\frac{a}{1-r} = 125$$
B1

An attempt to solve these equations simultaneously by eliminating one of the variables M1

$$r^4 = 0.4096$$
 A1

 $r = 0.8$
 (c.a.o.) A1

 $a = 25$
 (f.t. candidate's value for r) A1

6. (a)
$$\frac{x^{4/3}}{4/3} - 2 \times \frac{x^{3/4}}{3/4} + c$$

(-1 if no constant term present)

(b) (i) $5+4x-x^2=8$ M1 An attempt to rewrite and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form (x + a)(x + b), with $a \times b = 3$ m1 $(x-1)(x-3) = 0 \Rightarrow x = 1, 3$ (c.a.o.) A1 Note: Answer only with no working earns 0 marks

Total area = $\int_{1}^{3} (5 + 4x - x^2) dx - \int_{1}^{3} 8 dx$ Either: $\int_{3}^{5} 5 dx = 5x$ and $\int_{3}^{8} 8 dx = 8x$ or: $\int_{3}^{3} 3 dx = 3x$ B1 $\int_{3}^{4} x dx = 2x^2$, $\int_{3}^{x^2} dx = \frac{x^3}{3}$ B1 B1 Total area = $[-3x + 2x^2 - (1/3)x^3]_{1}^{3}$ (o.e)

= (-9 + 18 - 9) - (-3 + 2 - 1/3)

(substitution of candidate's limits in at least one integral) m1 Subtraction of integrals with correct use of candidate's

Total area = $\frac{4}{3}$ (c.a.o.) A1

Or:

Area of rectangle = 16

(f.t. candidate's x-coordinates for A, B) B1

Area under curve =
$$\int_{1}^{3} (5 + 4x - x^{2}) dx$$
 (use of integration) M1

$$= \left[5x + 2x^2 - (1/3)x^3\right]_1^3$$

(correct integration) B2
=
$$(15 + 18 - 9) - (5 + 2 - 1/3)$$

(substitution of candidate's limits) m1
= $\frac{52}{2}$

Use of candidate's, x_A , x_B as limits and trying to find total area by subtracting area of rectangle from area under curve m1 Total area = 52 - 16 = 4 (c.a.o.) A1 3 3 7. (a) Let $p = \log_a x$ Then $x = a^p$ (relationship between log and power) B1 $x^n = a^{pn}$ (the laws of indices) B1 $\therefore \log_a x^n = pn$ (relationship between log and power) $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1

(b)
$$\frac{1}{2}\log_a 324 = \log_a 324^{1/2}$$

$$2\log_a 12 = \log_a 12^2$$
 (at least one use of power law) B1

$$\frac{1}{2}\log_a 324 + \log_a 56 - 2\log_a 12 = \log_a \frac{324^{1/2} \times 56}{12^2}$$

(use of addition law) B1
(use of subtraction law) B1

$$\frac{1}{2}\log_a 324 + \log_a 56 - 2\log_a 12 = \log_a 7$$
 (c.a.o) B1

Note: Answer only of log_a 7 without any working earns 0 marks

(<i>c</i>)	(i)	$2^{x+1} = 2^x \times 2$	B1
		$3^x = 2^{x+1} \Longrightarrow (1 \cdot 5)^x = 2$	B1
	(ii)	Hence: $x \log_{10} 1.5 = \log_{10} 2$	

(taking logs on b	ooth sides and using the power law) M1
(f	f.t. candidate's values for c and d)
x = 1.71	(c.a.o.) A1
Otherwise:	
$x \log_{10} 3 = (x+1) \log_{10} 3$	2
(taking logs on h	ooth sides and using the power law) M1

(taking logs on both sides and using the power law) M1 x = 1.71 (c.a.o.) A1

(a)A(-2, 4)B1A correct method for finding radiusM1Radius = $\sqrt{10}$ A1

8.

<i>(b)</i>	An attempt to substitute $(3y - 4)$ for x in the equation of the circ $10y^2 - 20y + 10 = 0$		
	Either	r: Use of $b^2 - 4ac$	m1
	Determinant = $0 \Rightarrow x - 3y + 4 = 0$ is a tangent to the		е
		circle	A1
	Or:	An attempt to factorise candidate's quadratic	m1
	Repeated (single) root $\Rightarrow x - 3y + 4 = 0$ is a tangent		
		circle	A1

9. (a)
$$\frac{1}{2} \times 6^2 \times \sin \theta = 9.1$$
 M1

$$\theta = 0.53$$
 A1

(b) Substitution of values in formula for area of sector M1
Area =
$$\frac{1}{2} \times 6^2 \times 0.53 = 9.54 \text{ cm}^2$$
 (f.t. candidate's value for θ) A1

$$(c) \qquad 6+6+6\varphi = \pi \times 6 \qquad \qquad \text{M1}$$

$$\varphi = 1.14$$
 A1

10. (a)

$$t_3 = 31$$
 B1

 $t_1 = 7$
 (f.t. candidate's value for t_3)
 B1