C2

Solutions and Mark Scheme

Final Version

2. (a) $3-7 \cos \theta=6\left(1-\cos ^{2} \theta\right) \quad$ (correct use of $\sin ^{2} \theta=1-\cos ^{2} \theta$) M1 An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta+b)(c \cos \theta+d)$,
with $a \times c=$ coefficient of $\cos ^{2} \theta$ and $b \times d=$ constant m1
$6 \cos ^{2} \theta-7 \cos \theta-3=0 \Rightarrow(3 \cos \theta+1)(2 \cos \theta-3)=0$
$\Rightarrow \cos \theta=-\frac{1}{3}, \quad(\cos \theta=3 / 2) \quad$ (c.a.o.)
$\theta=109.47^{\circ}, 250.53^{\circ}$
B1 B1
Note: Subtract (from final two marks) 1 mark for each additional root in range from $3 \cos \theta+1=0$, ignore roots outside range. $\cos \theta=-$, f.t. for 2 marks, $\cos \theta=+$, f.t. for 1 mark
(b) $2 x+45^{\circ}=35^{\circ}, 215^{\circ}, 395^{\circ}$
(one value)
B1
$x=85^{\circ}, 175^{\circ}$
B1, B1
Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.
(c) Correct use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$ (o.e.)
$\theta=194.48^{\circ}$
A1
$\theta=345 \cdot 52^{\circ}$
Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.
3.
(a) $x^{2}=8^{2}+(x+2)^{2}-2 \times 8 \times(x+2) \times \cos 60^{\circ}$
(correct use of cos rule) M1
$x^{2}=64+x^{2}+4 x+4-8 x-16 \quad$ A1
$x=13 \quad$ (f.t. only $x=21$ from +16 in the line above) A1
(b) $\underline{\sin A C B}=\underline{\sin 60^{\circ}}$ (substituting correct values in the correct places in $8 \quad 13$ the sin rule, f.t. candidate's derived value for x) M1
$A C B=32 \cdot 2^{\circ}$
(f.t. candidate's derived value for x) A1
4. (a) At least one correct use of the sum formula
$\underline{8} \times[2 a+7 d]=124$
2
$\frac{20}{2} \times[2 a+19 d]=910$
(both correct) A1
An attempt to solve the candidate's two equations simultaneously by eliminating one unknown
$d=5$
(c.a.o.) A1
$a=-2$
(f.t. candidate's value for d) A1
(b) $\quad-2+5(n-1)=183 \quad$ (f.t. candidate's values for a and d) M1
$n=38$
(c.a.o.) A1
5. (a) $S_{n}=a+a r+\ldots+a r^{n-1}$ (at least 3 terms, one at each end) B1 $r S_{n}=a r+\ldots+a r^{n-1}+a r^{n}$
$S_{n}-r S_{n}=a-a r^{n} \quad$ (multiply first line by r and subtract) M1
$(1-r) S_{n}=a\left(1-r^{n}\right)$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
(convincing) A1
(b) Either: $\quad \frac{a\left(1-r^{4}\right)}{1-r}=73 \cdot 8$

Or: $\quad a+a r+a r^{2}+a r^{3}=73 \cdot 8$
$\frac{a}{1-r}=125$
An attempt to solve these equations simultaneously by eliminating one of the variables

M1
$r^{4}=0 \cdot 4096$
A1
$r=0 \cdot 8$
(c.a.o.) A1
$a=25$
(f.t. candidate's value for r) A1
6. (a) $\frac{x^{4 / 3}}{4 / 3}-2 \times \frac{x^{3 / 4}}{3 / 4}+c$
(b)
(i) $5+4 x-x^{2}=8$

M1
An attempt to rewrite and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form $(x+a)(x+b)$, with $a \times b=3 \quad \mathrm{~m} 1$ $(x-1)(x-3)=0 \Rightarrow x=1,3$ (c.a.o.) A1

Note: Answer only with no working earns 0 marks
(ii) Either:

Total area $=\int_{1}^{3}\left(5+4 x-x^{2}\right) \mathrm{d} x-\int_{1}^{3} 8 \mathrm{~d} x$

Total area $=\left[-3 x+2 x^{2}-(1 / 3) x^{3}\right]_{1}^{3}$

$$
\begin{equation*}
=(-9+18-9)-(-3+2-1 / 3) \tag{o.e}
\end{equation*}
$$

(substitution of candidate's limits in at least one integral) ml Subtraction of integrals with correct use of candidate's x_{A}, x_{B} as limits $\quad \mathrm{m} 1$
Total area $=\frac{4}{3}$
(c.a.o.) A1

Or:
Area of rectangle $=16$
(f.t. candidate's x-coordinates for A, B) $\quad \mathrm{B} 1$

Area under curve $=\int_{1}^{3}\left(5+4 x-x^{2}\right) \mathrm{d} x$ (use of integration) M1

$$
=\left[5 x+2 x^{2}-(1 / 3) x^{3}\right]_{1}^{3}
$$ (correct integration) B2

$=(15+18-9)-(5+2-1 / 3)$
(substitution of candidate's limits) m 1

$$
=\frac{52}{3}
$$

Use of candidate's, x_{A}, x_{B} as limits and trying to find total area by subtracting area of rectangle from area under curve m1 Total area $=\underline{52}-16=\underline{4}$
(c.a.o.) A1
7. (a) Let $p=\log _{a} x$

Then $x=a^{p} \quad$ (relationship between log and power) B1
$x^{n}=a^{p n} \quad$ (the laws of indices) B1
$\therefore \log _{a} x^{n}=p n \quad$ (relationship between \log and power)
$\therefore \log _{a} x^{n}=p n=n \log _{a} x$
(convincing) B1
(b) $\quad \frac{1}{2} \log _{a} 324=\log _{a} 324^{1 / 2}$

2
$2 \log _{a} 12=\log _{a} 12^{2} \quad$ (at least one use of power law) B1 $\frac{1}{2} \log _{a} 324+\log _{a} 56-2 \log _{a} 12=\log _{a} \frac{324^{1 / 2} \times 56}{12^{2}}$
(use of addition law) B1 (use of subtraction law) B1
$\underline{1} \log _{a} 324+\log _{a} 56-2 \log _{a} 12=\log _{a} 7$
2
Note: Answer only of $\log _{a} 7$ without any working earns 0 marks
(c) (i) $2^{x+1}=2^{x} \times 2 \quad$ B1 $3^{x}=2^{x+1} \Rightarrow(1 \cdot 5)^{x}=2 \quad$ B1
(ii) Hence: $x \log _{10} 1 \cdot 5=\log _{10} 2$
(taking logs on both sides and using the power law) M1 (f.t. candidate's values for c and d)

$$
x=1.71
$$

(c.a.o.) A1

Otherwise:

$x \log _{10} 3=(x+1) \log _{10} 2$
(taking logs on both sides and using the power law) M1
$x=1 \cdot 71$
(c.a.o.) A1
8. (a) $A(-2,4)$

A correct method for finding radius
Radius $=\sqrt{ } 10$
(b) An attempt to substitute $(3 y-4)$ for x in the equation of the circle M1 $10 y^{2}-20 y+10=0$
Either: Use of $b^{2}-4 a c \quad \mathrm{~m} 1$
Determinant $=0 \Rightarrow x-3 y+4=0$ is a tangent to the circle

A1
Or: An attempt to factorise candidate's quadratic
m1
Repeated (single) root $\Rightarrow x-3 y+4=0$ is a tangent to the circle
9.
(a) $\frac{1}{2} \times 6^{2} \times \sin \theta=9 \cdot 1$ M1 2 $\theta=0.53$ A1
$\begin{array}{lll}\text { (b) Substitution of values in formula for area of sector } & \text { M1 } \\ \text { Area }=1 / 2 \times 6^{2} \times 0.53=9.54 \mathrm{~cm}^{2} \quad \text { (f.t. candidate's value for } \theta \text {) } & \text { A1 }\end{array}$
(c) $6+6+6 \varphi=\pi \times 6$ M1
$\varphi=1 \cdot 14$
A1
10. (a) $\quad \begin{aligned} t_{3} & =31 \\ t_{1} & =7\end{aligned}$
(f.t. candidate's value for t_{3}) B

B1
(b) All terms of the sequence are odd numbers E1

