1·144122806

$\pi/5$	1.260073511		
$3\pi/10$	1.344997024		
$2\pi/5$	1.396802247		
$\pi/2$	1.414213562	(all values correct)	B1
Correct formula with $h = \pi/1$	0		M1
$I \approx \frac{\pi/10}{10} \times \{1 + 1.414213562 + 2(1.144122806 + 1.260073511 + 1.344997024)\}$			
2		+ 1.396802247)}	
$I \approx 1.9$		(f.t. one slip)	A1

2.	(a)	$3x = 60^\circ$, 240° , 420° , 600° $x = 20^\circ$, 80° , 140° Note: Subtract 1 mark for each as ignore roots outside range.	(one value) dditional root in range,	B1 B1, B1, B1
(b)		$4\cos^2\theta - \cos\theta = 2(1 - \cos^2\theta)$ (correct use of $\sin^2\theta = 1 - \cos^2\theta$) M1 An attempt to collect terms, form and solve quadratic equation in $\cos\theta$, either by using the quadratic formula or by getting the expression into the form $(a\cos\theta + b)(c\cos\theta + d)$,		M1
		with $a \times c = \text{coefficient of } \cos^2 \theta$ and $b \times d = \text{constant}$ $6 \cos^2 \theta - \cos \theta - 2 = 0 \Rightarrow (3 \cos \theta - 2)(2 \cos \theta + 1) = 0$		m1
		$\Rightarrow \cos \theta = \underline{2}, -\underline{1}$		A1
		$\theta = 48.19^{\circ}, 311.81^{\circ}, 120^{\circ}, 240^{\circ}$	(48·19°, 311·81°)	B1
			(120°)	B1
			(240°)	B1
	Note:	Subtract 1 mark for each additional branch, ignore roots outside range.	l root in range for each	

 $\cos \theta = +, -, \text{ f.t. for 3 marks}, \quad \cos \theta = -, -, \text{ f.t. for 2 marks}$ $\cos \theta = +, +, \text{ f.t. for 1 mark}$

MATHEMATICS C2

(3 values correct)

(5 values correct)

(f.t. one slip)

B1

B1

M1

A1

1

1.175875602

1.306562965

1.387039845

1.414213562

 $I \approx \underline{\pi/8} \times \{1 + 1.414213562 + 2(1.175875602 + 1.306562965 + 1.387039845)\}$

1

1.

0

 $\pi/8$

 $\pi/4$

 $3\pi/8$

 $\pi/2$

 $\begin{array}{c} 2\\ I\approx 1{\cdot}994 \end{array}$

0

 $\pi/10$

Correct formula with $h = \pi/8$

Special case for candidates who put $h = \pi/10$

3. (a)
$$7^{2} = x^{2} + (3x)^{2} - 2 \times x \times 3x \times \cos 60^{\circ}$$
 (correct use of cos rule) M1

$$7^{2} = x^{2} + 9x^{2} - 3x^{2}$$
 A1

$$7x^{2} = 7^{2} \Rightarrow x = \sqrt{7}$$
 (convincing) A1

(b) Either:

$$\frac{7}{\sin 60^{\circ}} = \frac{\sqrt{7}}{\sin ACB}$$
(correct use of sin rule) M1
 $ACB = 19 \cdot 11^{\circ}$ A1

Or:

$$(\sqrt{7})^2 = 7^2 + (3\sqrt{7})^2 - 2 \times 7 \times (3\sqrt{7}) \times \cos ACB$$
 (correct use of cos rule) M1
 $ACB = 19 \cdot 11^\circ$ A1

4. (a)
$$a + 2d = k(a + 5d)$$
 $(k = 4, 1/4)$ M1
 $a + 2d = 4(a + 5d)$ A1
20[2a + 19d] = 350 B1

2M1An attempt to solve simultaneous equationsM1
$$d = 5$$
 $(a = -30)$ (c.a.o.) $a = -30$ $(d = 5)$ (f.t. one error)A1

(b)
$$-30 + (n-1) \times 5 = 125$$
 (equation for *n*'th term and an
attempt to solve, f.t. candidate's values for *a*, *d*) M1
 $n = 32$ (c.a.o.) A1

5.

(b)

(i)
$$\frac{a}{1-r} = 10$$
 B1

$$\frac{a}{1-2r} = 15$$
B1

An attempt to eliminate
$$a$$
M1 $r = 0.25$ (c.a.o.)A1

(ii)
$$a = 7.5$$

 $S_4 = \underline{7.5[1 - 0.25^4]}$

 $1 - 0.25$

B1

 $1 - 0.25$

$$S_4 \approx 9.96$$
(award even if sum calculated for 2^{nd} series)M1 $S_4 \approx 9.96$ (f.t. candidate's derived values of a, r)A1

6.	<i>(a)</i>	$\underline{2x^{5/2}} + \underline{9x^{-3}}$	(+c)	B1,B1
		5/2 -3		

(b) (i)
$$x^2 + 2 = 3x$$
 M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = 2$ m1
 $(x - 2)(x - 1) = 0 \Rightarrow x = 1, x = 2$ (both values, c.a.o.) A1

$$A(1, 3), B(2, 6)$$
 (both values, f.t. candidate's x values) A1

(ii)

Either:

Total area =
$$\int_{0}^{1} 3x \, dx + \int_{1}^{2} (x^2 + 2) \, dx \qquad \text{(use of integration)} \qquad M1$$

(addition of integrals)

m1

$$= [(3/2)x^{2}]_{0}^{1} + [(1/3)x_{1}^{2} + 2x] \text{ (correct integration)} B3$$

$$= [3/2 - 0] + [(8/3 + 4) - (1/3 + 2)]$$

(use of candidate's 0, x_4 , x_8 as limits) M1

$$= 35/6$$
 (c.a.o.) A1

Or:

Area of triangle =
$$3/2$$
 (f.t. candidate's coordinates for *A*) B1

Area under curve
$$= \int_{1}^{2} (x^2 + 2) dx$$
 (use of integration) M1

$$= \left[(1/3)x^3 + 2x \right]_{1}^{2}$$
 (correct integration) B2

$$= (8/3 + 4) - (1/3 + 2)$$
(use of candidate's x_A , x_B as limits) M1
= 13/3

Finding total area by adding valuesm1Total area =
$$3/2 + 13/3 = 35/6$$
(c.a.o.)A1

7.	(<i>a</i>)	(i) Let $x = \log_a p$, $y = \log_a q$ Then $p = a^x$, $q = a^y$ (relationship between log $pq = a^x \times a^y = a^{x+y}$ (the laws of indicies) $\log_a pq = x + y = \log_a p + \log_a q$	and power) (convincing)	B1 B1 B1
		$2 \log_a (3x-4) = \log_a (3x-4)^2 $ (p x(3x+4) = (3x-4)^2 (red) An attempt to rearrange and solve quadratic	ddition law) ower law) emoving logs) .a.o.)	B1 B1 M1 m1 A1
	(<i>b</i>)	Either: $x \log_{10} 3 = \log_{10} 11$ $x = \frac{\log_{10} 11}{\log_{10} 3} \implies x \approx 2.183$ Or:		B1 B1
		$x = \log_3 11$ $x \approx 2.183$		B1 B1
8.	(<i>a</i>)	A(-2, 8) A correct method for finding the radius Radius = $\sqrt{50}$		B1 M1 A1
	(b)	An attempt to substitute $(x + 2)$ for y in the equation of $x^2 - 4x - 5 = 0$ (or $2x^2 - 8x - 10 = 0$) x = -1, x = 5 (correctly solving candidate's quadratic, be Points of intersection are $(-1, 1), (5, 7)$		M1 B1 A1 A1
9.	(<i>a</i>)	Length of arc = 6θ Circumference of circle = $2 \times \pi \times 6$		B1
		$2 \times \pi \times 6 = 2 \times 6\theta + 24$ (expression of the given information as an equation using	ng the candidate's	B1
		expression of the given information as an equation using expressions for length of arc and circumference) $\theta = \pi - 2$	(convincing)	M1 A1
	(b)	Either: Area of unshaded sector = $(1/2) \times 6^2 \times (\pi - 2)$ Area of shaded sector = $36\pi - (1/2) \times 6^2 \times (\pi - 2)$	[= 20.55]	B1
		(f.t. candidate's expression/value for area of unshaded Area of shaded sector = 92.55 cm^2	d sector) (c.a.o.)	M1 A1
		Or: Angle in shaded sector = $2\pi - (\pi - 2)$ Area of shaded sector = $(1/2) \times 6^2 \times [2\pi - (\pi - 2)]$ Area of shaded sector = 92.52 cm^2 Accept answers in the interval [$92.5, 92.6$]	[= 5·14] (c.a.o.)	B1 M1 A1