MATHEMATICS C2

1.

0	1
$\pi / 8$	$1 \cdot 175875602$
$\pi / 4$	$1 \cdot 306562965$
$3 \pi / 8$	$1 \cdot 387039845$
$\pi / 2$	$1 \cdot 414213562$

(3 values correct)
B1
$\pi / 2 \quad 1 \cdot 414213562$
(5 values correct)
B1
Correct formula with $h=\pi / 8$
$I \approx \frac{\pi / 8}{2} \times\{1+1 \cdot 414213562+2(1 \cdot 175875602+1 \cdot 306562965+1 \cdot 387039845)\}$
$I \approx 1.994 \quad$ (f.t. one slip)
Special case for candidates who put $h=\pi / 10$
0 1
$\pi / 10 \quad 1 \cdot 144122806$
$\pi / 5 \quad 1 \cdot 260073511$
$3 \pi / 10 \quad 1 \cdot 344997024$
$2 \pi / 5 \quad 1.396802247$
$\pi / 2 \quad 1.414213562$
(all values correct)
Correct formula with $h=\pi / 10$
$I \approx \frac{\pi / 10}{2} \times\{1+1 \cdot 414213562+2(1 \cdot 144122806+1 \cdot 260073511+1 \cdot 344997024$
$I \approx 1.9 \quad$ (f.t. one slip)
2. (a) $3 x=60^{\circ}, 240^{\circ}, 420^{\circ}, 600^{\circ}$
(one value)
B1
$x=20^{\circ}, 80^{\circ}, 140^{\circ}$
B1, B1, B1
Note: Subtract 1 mark for each additional root in range, ignore roots outside range.
(b) $4 \cos ^{2} \theta-\cos \theta=2\left(1-\cos ^{2} \theta\right) \quad$ (correct use of $\sin ^{2} \theta=1-\cos ^{2} \theta$)

An attempt to collect terms, form and solve quadratic equation
in $\cos \theta$, either by using the quadratic formula or by getting the
expression into the form $(a \cos \theta+b)(c \cos \theta+d)$,
with $a \times c=$ coefficient of $\cos ^{2} \theta$ and $b \times d=$ constant
m1
$6 \cos ^{2} \theta-\cos \theta-2=0 \Rightarrow(3 \cos \theta-2)(2 \cos \theta+1)=0$
$\Rightarrow \cos \theta=\underset{3}{2},-\underline{1} 2$
$\theta=48 \cdot 19^{\circ}, 311 \cdot 81^{\circ}, 120^{\circ}, 240^{\circ} \quad\left(48 \cdot 19^{\circ}, 311 \cdot 81^{\circ}\right) \quad$ B1
$\left(120^{\circ}\right)$
B1
$\left(240^{\circ}\right)$
B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\cos \theta=+,-$, f.t. for 3 marks, $\cos \theta=-,-$, f.t. for 2 marks $\cos \theta=+,+$, f.t. for 1 mark
3.

(a) \quad| $7^{2}=x^{2}+(3 x)^{2}-2 \times x \times 3 x \times \cos 60^{\circ}$ |
| :--- |
| $7^{2}=x^{2}+9 x^{2}-3 x^{2}$ |
| $7 x^{2}=7^{2} \Rightarrow x=\sqrt{7}$ |

(correct use of cos rule)
M1
$7 x^{2}=7^{2} \Rightarrow x=\sqrt{ } 7$
(convincing)
(b) Either:
$\frac{7}{\sin 60^{\circ}}=\frac{\sqrt{7}}{\sin A C B}$
(correct use of sin rule)
$A C B=19 \cdot 11^{\circ}$

Or:
$(\sqrt{ } 7)^{2}=7^{2}+(3 \sqrt{ } 7)^{2}-2 \times 7 \times(3 \sqrt{ } 7) \times \cos A C B$
(correct use of cos rule)
$A C B=19 \cdot 11^{\circ}$
4.
(a) $a+2 d=k(a+5 d)$
$a+2 d=4(a+5 d)$
$\underline{20}[2 a+19 d]=350$
An attempt to solve simultaneous equations
$n=32$
5. (a) $\quad S_{n}=a+a r+\ldots+a r^{n-2}+a r^{n-1}$
$r S_{n}=a r+a r^{2}+\ldots a r^{n-1}+a r^{n}$
$S_{n}-r S_{n}=a-a r^{n}$
$(1-r) S_{n}=a\left(1-r^{\prime \prime}\right)$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$ $(k=4,1 / 4)$

$d=5$	$(a=-30)$	(c.a.o.)	A1
$a=-30$	$(d=5)$	(f.t. one error)	A1

(b) $\quad-30+(n-1) \times 5=125 \quad$ (equation for n^{\prime} th term and an

$$
\text { attempt to solve, f.t. candidate's values for } a, d \text {) }
$$

(at least 3 terms, one at each end)
(multiply first line by r and subtract)
(convincing)
(b) (i) $\frac{a}{1-r}=10$

$\frac{a}{1-2 r}=15$	B1	
An attempt to eliminate a $r=0.25$		M1
(c.a.o.)	A1	

(ii) $\quad \begin{aligned} & a=7 \cdot 5 \\ & \\ & S_{4}=7.5\left[1-0.25^{4}\right]\end{aligned}$
$S_{4}=7 \cdot 5\left[1-0 \cdot 25^{4}\right]$

$$
S_{4} \approx 9.96
$$

(award even if sum calculated for $2^{\text {nd }}$ series)
A1
6. (a) $\frac{2 x^{5 / 2}}{5 / 2}+\frac{9 x^{-3}}{-3} \quad(+c)$

B1,B1
(b)

$$
\text { (i) } x^{2}+2=3 x
$$

An attempt to rewrite and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form $(x+a)(x+b)$, with $a \times b=2$
$(x-2)(x-1)=0 \Rightarrow x=1, x=2 \quad$ (both values, c.a.o.)
$A(1,3), B(2,6) \quad$ (both values, f.t. candidate's x values)
(ii)

Either:

$\begin{array}{ccc}\text { Total area }=\int_{0}^{1} 3 x \mathrm{~d} x+\int_{1}^{2}\left(x^{2}+2\right) \mathrm{d} x & \text { (use of integration) } & \mathrm{M} 1 \\ & \\ \text { (addition of integrals) } & \mathrm{m} 1\end{array}$

$$
=\left[(3 / 2) x^{2}\right]_{0}^{1}+\left[(1 / 3) x_{1}^{2}+2 x\right] \text { (correct integration) } \quad \text { B3 }
$$

$$
=[3 / 2-0]+[(8 / 3+4)-(1 / 3+2)]
$$

$$
\text { (use of candidate's } 0, x_{A}, x_{A}, x_{B} \text { as limits) }
$$

$=35 / 6 \quad$ (c.a.o.)
Or:
Area of triangle $=3 / 2 \quad$ (f.t. candidate's coordinates for A)
Area under curve $=\int_{1}\left(x^{2^{2}}+2\right) \mathrm{d} x \quad$ (use of integration) \quad M1

$$
\begin{array}{ll}
=\left[(1 / 3) x^{3}+2 x\right]_{1}^{2} & \text { (correct integration) }
\end{array} \quad \text { B2 } \quad \begin{array}{ll}
= & (8 / 3+4)-(1 / 3+2) \\
& \text { (use of candidate's } x_{A}, x_{B} \text { as limits) }
\end{array}
$$

Finding total area by adding values
Total area $=3 / 2+13 / 3=35 / 6 \quad$ (c.a.o.)
7. (a) (i) Let $x=\log _{a} p, y=\log _{a} q$

Then $p=a^{x}, q=a^{y} \quad$ (relationship between \log and power) B1
$p q=a^{x} \times a^{y}=a^{x+y} \quad$ (the laws of indicies) B1
$\log _{a} p q=x+y=\log _{a} p+\log _{a} q \quad$ (convincing) B1
(ii) $\quad \log _{a} x+\log _{a}(3 x+4)=\log _{a} x(3 x+4) \quad$ (addition law) B1
$2 \log _{a}(3 x-4)=\log _{a}(3 x-4)^{2} \quad$ (power law) B1
$x(3 x+4)=(3 x-4)^{2} \quad$ (removing logs) M1
An attempt to rearrange and solve quadratic ml
$3 x^{2}-14 x+8=0 \Rightarrow x=2 / 3, x=4 \quad$ (c.a.o.)
(b) Either:
$x \log _{10} 3=\log _{10} 11$
$x=\frac{\log _{10}}{\log _{10}} \frac{11}{3} \Rightarrow x \approx 2 \cdot 183 \quad$ B1
Or:
$x=\log _{3} 11$
B1
$x \approx 2 \cdot 183$
8. (a) $A(-2,8) \quad$ B1

A correct method for finding the radius M1
Radius $=\sqrt{50} \quad \mathrm{~A} 1$
(b) An attempt to substitute $(x+2)$ for y in the equation of the circle M1
$x^{2}-4 x-5=0 \quad$ (or $2 x^{2}-8 x-10=0$) B1
$x=-1, x=5$ (correctly solving candidate's quadratic, both values) A1
Points of intersection are $(-1,1),(5,7) \quad$ (c.a.o.)
9. (a) Length of $\operatorname{arc}=6 \theta \quad$ B1

Circumference of circle $=2 \times \pi \times 6$
$2 \times \pi \times 6=2 \times 6 \theta+24$
(expression of the given information as an equation using the candidate's expressions for length of arc and circumference)
$\theta=\pi-2 \quad$ (convincing)
A1
(b) Either:

Area of unshaded sector $=(1 / 2) \times 6^{2} \times(\pi-2) \quad[=20 \cdot 55] \quad$ B1
Area of shaded sector $=36 \pi-(1 / 2) \times 6^{2} \times(\pi-2)$
(f.t. candidate's expression/value for area of unshaded sector)

Area of shaded sector $=92.55 \mathrm{~cm}^{2} \quad$ (c.a.o.)
Or:
Angle in shaded sector $=2 \pi-(\pi-2) \quad[=5 \cdot 14] \quad$ B1
Area of shaded sector $=(1 / 2) \times 6^{2} \times[2 \pi-(\pi-2)] \quad$ M1
Area of shaded sector $=92.52 \mathrm{~cm}^{2} \quad$ (c.a.o.)
Accept answers in the interval [92.5, 92.6]

