1.	(<i>a</i>)	(i)	Gradient of $AC = \underline{\text{increase in } y}{\text{increase in } x}$ M1Gradient of $AC = 4/3$ (or equivalent)A1
		(ii)	A correct method for finding the equation of AC using candidate's gradient for AC M1 Equation of AC : $y - 4 = 4/3[x - (-6)]$ (or equivalent) (f.t. candidate's gradient for AC) A1 Equation of AC : $4x - 3y + 36 = 0$ (convincing) A1
		(iii)	$\begin{bmatrix} \text{Gradient of } BD = \underbrace{\text{increase in } y}_{\text{increase in } x} & \text{M1} \\ \end{bmatrix}$ (to be awarded only if corresponding M1 is not awarded in part (i)) Gradient of $BD = -3/4$ (or equivalent) A1 An attempt to use the fact that the product of perpendicular lines = -1 (or equivalent) M1 Gradient $AC \times \text{Gradient } BD = -1 \Rightarrow AC, BD$ perpendicular A1
		(iv)	$ \begin{bmatrix} A \text{ correct method for finding the equation of } BD \text{ using the} \\ candidate's gradient for } BD & M1 \end{bmatrix} $ $ (to be awarded only if corresponding M1 is not awarded in part (ii)) $ Equation of BD : $y - 11 = -\frac{3}{4}[x - (-7)]$ (or equivalent) (f.t. candidate's gradient for BD) A1
		Note:	Total mark for part (<i>a</i>) is 9 marks
	<i>(b)</i>	(i)	An attempt to solve equations of AC and BD simultaneouslyM1

C1

(i) An attempt to solve equations of *AC* and *BD* simultaneouslyM1 x = -3, y = 8 (convincing) A1 (ii) A correct method for finding the length of *BE* M1 *BE* = 15 A1

2. (a)
$$\frac{5\sqrt{7}-\sqrt{3}}{\sqrt{7}-\sqrt{3}} = \frac{(5\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})}{(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})}$$
 M1

 $5 \times 7 + 5 \times \sqrt{7} \times \sqrt{3} - \sqrt{7} \times \sqrt{3} - 3$ Numerator: A1

Denominator:
$$7-3$$
 AI
 $5\sqrt{7} - \sqrt{3} - 8 + \sqrt{21} (0, 0, 0)$ A1

$$\frac{5\sqrt{7} - \sqrt{3}}{\sqrt{7} - \sqrt{3}} = 8 + \sqrt{21} \text{ (c.a.o.)}$$

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{7} - \sqrt{3}$

$$\sqrt{75} = 5\sqrt{3}$$
 B1

$$(\sqrt{15} \times \sqrt{20}) - \sqrt{75} - \frac{\sqrt{60}}{\sqrt{5}} = 3\sqrt{3}$$
 (c.a.o.) B1

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 8$ 3. *(a)*

> An attempt to differentiate, at least one non-zero term correct) M1 An attempt to substitute x = 3 in candidate's expression for dym1 dx

Value of
$$\frac{dy}{dx}$$
 at $P = -2$ (c.a.o.)A1

Gradient of normal =
$$\frac{-1}{\text{candidate's value for } dy}$$
 m1

 $\frac{dx}{dx}$ y - (-5) = ¹/₂(x - 3) (or equivalent) Equation of normal to *C* at *P*:

(f.t. candidate's value for dy provided M1 and both m1's awarded) A1 dx

(b) Putting candidate's expression for
$$\frac{dy}{dx} = 4$$
 M1

x-coordinate of Q = 6A1

y-coordinate of Q = -2A1 c = -26A1

(f.t. candidate's expression for dy and at most one error in the dx

enumeration of the coordinates of Q for all three A marks provided both M1's are awarded)

4.	(<i>a</i>)	$(1+x)^6 = 1 + 6x + 15x^2 + 20x^3 + \dots$ All terms correct Three terms correct	B2 B1
	(b)	An attempt to substitute $x = -0.01$ (or $x = -0.1$) in the expansion of part (<i>a</i>) (f.t. candidate's coefficients from part (<i>a</i>)) $(0.99)^6 \approx 1 - 6 \times 0.01 + 15 \times 0.0001 - 20 \times 0.000001$ (At least three terms correct, f.t. candidate's coefficients from particular from	M1 t (a))
		$(0.99)^6 = 0.94148 = 0.9415$ (correct to four decimal places)	A1
		(c.a.o.	.) A1
5.	(<i>a</i>)	a = 2 b = 3 c = -25	B1 B1 B1
	(<i>b</i>)	$6x^2 + 36x - 17 = 3 [a(x+b)^2 + c] + k$ ($k \neq 0$, candidate's a, b, c) Least value = $3c + 4$ (candidate's c)	M1 A1
6.	<i>(a)</i>	An expression for $b^2 - 4ac$, with at least two of a, b or c correct	M1
		$b^2 - 4ac = k^2 - 4 \times 2 \times 18$	A1
		Candidate's expression for $b^2 - 4ac < 0$ -12 < k < 12 (c.a.o.)	m1 .) A1
	<i>(b)</i>	Finding critical values $x = -0.5$, $x = 0.6$	B1
		A statement (mathematical or otherwise) to the effect that	
		$x \le -0.5$ or $0.6 \le x$ (or equivalent) (f.t. only $x = \pm 0.5$, $x = \pm 0.6$ Deduct 1 mark for each of the following errors) В2
		the use of $<$ rather than \le the use of the word 'and' instead of the word 'or'	
7.	(a)	$y + \delta y = -(x + \delta x)^2 + 5(x + \delta x) - 9$	B1
	()	Subtracting <i>y</i> from above to find δy	M1
		$\delta y = -2x\delta x - (\delta x)^2 + 5\delta x$	A1
		Dividing by δx and letting $\delta x \to 0$	M1
		$\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = -2x + 5 $ (c.a.o.)) AI
	(b)	$\overline{\mathrm{d}x}$ $\overline{4}$ $\overline{3}$	l, B1
		Either $8^{-2/3} = \frac{1}{4}$ or second term = (-) $\frac{24}{512}$ (or equivalent fraction)	B1
		$\frac{dy}{dx} = \frac{1}{64}$ (or equivalent) (c.a.o.)) B1

(a) Use of f(-2) = 0 M1 - 96 + 4k + 26 - 6 = 0 \Rightarrow k = 19 A1

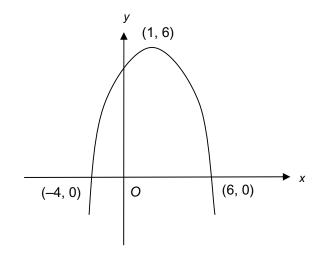
Candidates who assume k = 19 and show f(-2) = 0 are awarded B1

(b)
$$f(x) = (x+2)(12x^2 + ax + b)$$
 with one of a, b correct M1
 $f(x) = (x+2)(12x^2 - 5x - 3)$ A1

$$f(x) = (x+2)(4x-3)(3x+1)(\text{f.t. only } 12x^2 + 5x - 3 \text{ in above line})$$

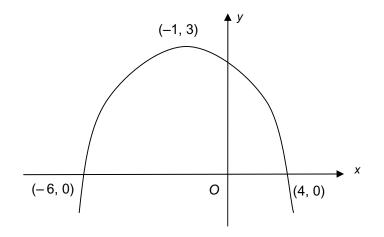
A1

Special case


8.

Candidates who find one of the remaining factors, (4x-3) or (3x + 1), using e.g. factor theorem, are awarded B1

(c) Attempting to find
$$f(1/2)$$
 M1
Remainder = $-\frac{25}{4}$ A1


If a candidate tries to solve (c) by using the answer to part (b), f.t. when candidate's expression is of the form $(x + 2) \times \text{two linear factors}$

9. (*a*)

Concave down curve with maximum at $(1, a), a \neq 3$	B1
Maximum at (1, 6)	B1
Both points of intersection with x-axis	B1

(*b*)

Concave down curve with maximum at $(b, 3), b \neq 1$	B1
Maximum at (-1, 3),	B1
Both points of intersection with x-axis	B1

10. (a)
$$\frac{dy}{dx} = \frac{3}{2}x^2 - 6$$
 B1

Putting derived
$$\frac{dy}{dx} = 0$$
 M1

$$x = -2, 2$$
 (both correct) (f.t. candidate's $\frac{dy}{dx}$) A1

Stationary points are
$$(-2, 11)$$
 and $(2, -5)$ (both correct) (c.a.o.)A1

A correct method for finding nature of stationary points yielding either (-2, 11) is a maximum point or (2, -5) is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1