1. (a)
(i) Gradient of $A C=\underline{\text { increase in } y}$ increase in x

Gradient of $A C=4 / 3$
(or equivalent)
A1
(ii) A correct method for finding the equation of $A C$ using candidate's gradient for $A C$
Equation of $A C: \quad y-4=4 / 3[x-(-6)]$ (or equivalent)
(f.t. candidate's gradient for $A C$) A1

Equation of $A C: \quad 4 x-3 y+36=0 \quad$ (convincing) A1
(iii) \int Gradient of $B D=\frac{\text { increase in } y}{\text { increase in } x}$

M1)
(to be awarded only if corresponding M1 is not awarded in part (i))
Gradient of $B D=-3 / 4 \quad$ (or equivalent) A1
An attempt to use the fact that the product of perpendicular
lines $=-1 \quad$ (or equivalent) M1
Gradient $A C \times$ Gradient $B D=-1 \Rightarrow A C, B D$ perpendicular
(iv) (A correct method for finding the equation of $B D$ using the 〕 (candidate's gradient for $B D$
(to be awarded only if corresponding M1 is not awarded in part (ii))
Equation of $B D: \quad y-11=-3 / 4[x-(-7)] \quad$ (or equivalent)
(f.t. candidate's gradient for $B D$)

Note: Total mark for part (a) is $\mathbf{9}$ marks
(b) (i) An attempt to solve equations of $A C$ and $B D$ simultaneouslyM1
$x=-3, y=8$
(convincing)
A1
(ii) A correct method for finding the length of $B E$
$B E=15$
2. (a) $\frac{5 \sqrt{7}-\sqrt{ } 3}{\sqrt{7}-\sqrt{ } 3}=\frac{(5 \sqrt{ } 7-\sqrt{ } 3)(\sqrt{ } 7+\sqrt{ } 3)}{(\sqrt{7}-\sqrt{ } 3)(\sqrt{ } 7+\sqrt{ } 3)}$

Numerator:	$5 \times 7+5 \times \sqrt{ } 7 \times \sqrt{ } 3-\sqrt{ } 7 \times \sqrt{ } 3-3$	A1
Denominator:	$7-3$	A1
$\frac{5 \sqrt{7}-\sqrt{ } 3}{\sqrt{7}-\sqrt{ } 3}=8+\sqrt{ } 21$	(c.a.o.)	A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{ } 7-\sqrt{ } 3$
(b) $\sqrt{ } 15 \times \sqrt{ } 20=10 \sqrt{ } 3$
$\sqrt{ } 75=5 \sqrt{ } 3 \quad$ B1
$\begin{array}{ll}\frac{\sqrt{60}}{\sqrt{5}}=2 \sqrt{ } 3 & \text { B1 }\end{array}$
$(\sqrt{ } 15 \times \sqrt{ } 20)-\sqrt{ } 75-\frac{\sqrt{ } 60}{\sqrt{ } 5}=3 \sqrt{ } 3$
(c.a.o.) B1
3. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-8$

An attempt to differentiate, at least one non-zero term correct) M1
An attempt to substitute $x=3$ in candidate's expression for $\underline{d y} \mathrm{~m} 1$ $\mathrm{d} x$

Value of $\underline{\mathrm{d} y}$ at $P=-2$
$\mathrm{d} x$
Gradient of normal $=\frac{-1}{\text { candidate's value for } \underline{\mathrm{d}} \boldsymbol{y}}$
m1

Equation of normal to C at $P: \quad y-(-5)=1 / 2(x-3) \quad$ (or equivalent)
(f.t. candidate's value for $\underline{\mathrm{d} y}$ provided M1 and both ml 's awarded) $\mathrm{d} x$
(b) Putting candidate's expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$
x-coordinate of $Q=6$
A1
y-coordinate of $Q=-2$
A1
$c=-26$
A1
(f.t. candidate's expression for $\underline{\mathrm{d} y}$ and at most one error in the $\mathrm{d} x$
enumeration of the coordinates of Q for all three A marks provided both M1's are awarded)
4. (a) $(1+x)^{6}=1+6 x+15 x^{2}+20 x^{3}+\ldots$

All terms correct
B2
Three terms correct B1
(b) An attempt to substitute $x=-0 \cdot 01$ (or $x=-0 \cdot 1$) in the expansion of part (a) (f.t. candidate's coefficients from part (a))
$(0.99)^{6} \approx 1-6 \times 0.01+15 \times 0.0001-20 \times 0.000001$
(At least three terms correct, f.t. candidate's coefficients from part (a))
$(0.99)^{6}=0.94148=0.9415 \quad$ (correct to four decimal places)
(c.a.o.) A1
5. (a) $\quad a=2$

B1
$b=3$
B1
$c=-25$
(b) $6 x^{2}+36 x-17=3\left[a(x+b)^{2}+c\right]+k \quad(k \neq 0$, candidate's $a, b, c) \quad$ M1 Least value $=3 c+4 \quad$ (candidate's c)
6. (a) An expression for $b^{2}-4 a c$, with at least two of a, b or c correct
$b^{2}-4 a c=k^{2}-4 \times 2 \times 18$
Candidate's expression for $b^{2}-4 a c<0$ m1 $-12<k<12$ (c.a.o.) A1
(b) Finding critical values $x=-0 \cdot 5, x=0.6$ B1
A statement (mathematical or otherwise) to the effect that $x \leq-0.5$ or $0.6 \leq x \quad$ (or equivalent) (f.t. only $x= \pm 0 \cdot 5, x= \pm 0 \cdot 6$) B2 Deduct 1 mark for each of the following errors the use of $<$ rather than \leq the use of the word 'and' instead of the word 'or'
7.
(a) $y+\delta y=-(x+\delta x)^{2}+5(x+\delta x)-9$ B1
Subtracting y from above to find δy M1
$\delta y=-2 x \delta x-(\delta x)^{2}+5 \delta x$ A1
Dividing by δx and letting $\delta x \rightarrow 0$ M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=-2 x+5$
(c.a.o.) A1
(b) $\underline{\mathrm{d} y}=\underline{3} \times \underline{1} \times x^{-2 / 3}+(-2) \times 12 \times x^{-3}$ B1, B1
$\mathrm{d} x \quad 4 \quad 3$
Either $8^{-2 / 3}=\frac{1}{4}$ or second term $=(-) \frac{24}{512}$ (or equivalent fraction) \quad B1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{64} \quad$ (or equivalent)
(c.a.o.) B1
8.
(a) Use of $f(-2)=0$
$-96+4 k+26-6=0 \Rightarrow k=19$
Special case
Candidates who assume $k=19$ and show $f(-2)=0$ are awarded
(b) $\quad f(x)=(x+2)\left(12 x^{2}+a x+b\right)$ with one of a, b correct
$f(x)=(x+2)\left(12 x^{2}-5 x-3\right)$

Special case

Candidates who find one of the remaining factors, $(4 x-3)$ or $(3 x+1)$, using e.g. factor theorem, are awarded
(c) Attempting to find $f(1 / 2)$

Remainder $=-\frac{25}{4}$
A1
If a candidate tries to solve (c) by using the answer to part (b), f.t. when candidate's expression is of the form $(x+2) \times$ two linear factors
9. (a)

Concave down curve with maximum at ($1, a$), $a \neq 3$
Maximum at $(1,6)$
B1
Both points of intersection with x-axis
(b)

Concave down curve with maximum at $(b, 3), b \neq 1$
B1
Maximum at ($-1,3$),
B1
Both points of intersection with x-axis
10. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2} x^{2}-6 \quad$ B1

Putting derived $\underline{\mathrm{d} y}=0 \quad$ M1 $\mathrm{d} x$
$x=-2,2 \quad$ (both correct) (f.t. candidate's $\underline{\mathrm{d} y}$)

Stationary points are $(-2,11)$ and $(2,-5) \quad$ (both correct)

A correct method for finding nature of stationary points yielding either $(-2,11)$ is a maximum point or $(2,-5)$ is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1

