Mathematics C1 January 2010

Solutions and Mark Scheme

Final Version

1.	(<i>a</i>)	Gradient of $BC = \frac{\text{increase in } y}{\text{increase in } x}$ M1 Gradient of $BC = -1/2$ (or equivalent) A1	
	(b)	(i) Use of gradient L_1 = gradient BC M1 A correct method for finding the equation of L_1 using candidate's gradient for L_1 M1 Equation of L_1 : $y - 10 = -1/2 [x - (-11)]$ (or equivalent) (f.t. candidate's gradient for BC) A1	ļ
		Equation of L_1 : $x + 2y - 9 = 0$ (convincing) A1(ii)Use of gradient $L_2 \times$ gradient $BC = -1$ M1A correct method for finding the equation of L_2 using candidate's gradient for L_2 M1(to be awarded only if corresponding M1 is not awarded in part (b)(i))M1Equation of L_2 : $y - 8 = 2(x - 3)$ (or equivalent) (f.t. candidate's gradient for BC)A1	l
	(c)	(i)An attempt to solve equations of L_1 and L_2 simultaneously M1 $x = 1, y = 4$ (convincing.) A1(ii)A correct method for finding the length of BD M1 $BD = 10$ A1(iii)A correct method for finding the coordinates of the mid-point of BD M1	ļ

Mid-point of *BD* has coordinates (-2, 8)

A1

1

2. (a)
$$\frac{2\sqrt{11-3}}{\sqrt{11+2}} = \frac{(2\sqrt{11-3})(\sqrt{11-2})}{(\sqrt{11+2})(\sqrt{11-2})}$$
M1
Numerator:
$$22 - 4\sqrt{11} - 3\sqrt{11+6}$$
A1
Denominator:
$$11 - 4$$
A1
$$\frac{2\sqrt{11-3}}{2\sqrt{11-3}} = 4 - \sqrt{11}$$
(c.a.o.) A1

$$\frac{2\sqrt{11-3}}{\sqrt{11+2}} = 4 - \sqrt{11}$$
 (c.a.o.) A

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{11+2}$

(b) $\frac{22}{\sqrt{2}} = 11\sqrt{2}$ B1

$$\sqrt{50} = 5\sqrt{2}$$
B1
$$(x/2)^5 = 4x/2$$
B1

$$\frac{22}{\sqrt{2}} - \sqrt{50} - (\sqrt{2})^5 = 2\sqrt{2}$$
 (c.a.o.) B1

3. An attempt to differentiate, at least one non-zero term correct M1 $\underline{dy} = 6 \times -2 \times x^{-3} + \underline{7}$ A1

$$dx$$
 4
An attempt to substitute $x = 2$ in candidate's derived expression for dy M1
 dx

Value of
$$\underline{dy}$$
 at $P = \underline{1}$ (c.a.o.) A1

 $\begin{array}{c} \text{Value of } \underline{a_y} \text{ at } y = \underline{a_y} \\ \text{d}x = \underline{a_y} \\ \text{Gradient of normal} = \underline{-1} \\ \text{candidate's derived value for } \underline{dy} \\ \underline{dx} \\ \end{array}$ M1

Equation of normal to C at P: y-3 = -4(x-2) (or equivalent) (f.t. candidate's value for $\frac{dy}{dx}$ provided all three M1's are awarded) A1

4. (a)
$$a = 4$$
 B1
 $b = -1$ B1

$$c = 3$$
 B1

(b) $\frac{1}{c}$ on its own or greatest value = $\frac{1}{c}$,
ccB2with correct explanation or no explanationB2If B2 not awarded1O its own or greatest value = $\frac{1}{c}$, with incorrect explanationB1cccB1least value = $\frac{1}{c}$ with no explanationB1least value = $\frac{1}{c}$ with incorrect explanationB0

5.	<i>(a)</i>	An expression for $b^2 - 4ac$, with at least two of a, b or c correct	M1
		$b^2 - 4ac = 3^2 - 4 \times k \times (-5)$	A1
		$b^2 - 4ac < 0$	m1
		$k < -\frac{9}{20}$	
		(f.t. only for $k > \frac{9}{20}$ from $b^2 - 4ac = 3^2 - 4 \times k \times 5$)	A1

(b) Finding critical values x = -1.5, x = 2 B1 A statement (mathematical or otherwise) to the effect that x < -1.5 or 2 < x (or equivalent) (f.t critical values ± 1.5 , ± 2 only) B2 Deduct 1 mark for each of the following errors the use of \leq rather than <the use of the word 'and' instead of the word 'or'

6.	<i>(a)</i>	$y + \delta y = 3(x + \delta x)^2 - 7(x + \delta x) - 5$	B1
		Subtracting <i>y</i> from above to find δy	M1
		$\delta y = 6x\delta x + 3(\delta x)^2 - 7\delta x$	A1
		Dividing by δx and letting $\delta x \rightarrow 0$	M1
		$dy = limit \ \delta y = 6x - 7$	(c.a.o.) A1
		$dx \stackrel{\delta x \to 0}{\longrightarrow} \delta x$	

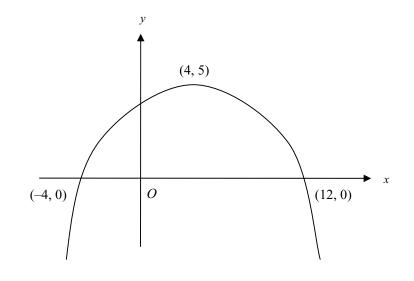
- (b) $\frac{dy}{dx} = a \times \frac{5}{2} \times x^{3/2}$ B1 Substituting x = 4 in candidate's expression for $\frac{dy}{dx}$ and putting expression equal to -2 M1 $a = -\frac{1}{10}$ (c.a.o.) A1
- 7. Coefficient of $x = {}^{5}C_{1} \times a^{4} \times 3(x)$ Coefficient of $x^{2} = {}^{5}C_{2} \times a^{3} \times 3^{2}(x^{2})$ $10 \times a^{3} \times m = k \times 5 \times a^{4} \times 3$ (o.e.) $(m = 9 \text{ or } 3, k = 8 \text{ or } {}^{1}/_{8})$ M1 $a = \frac{3}{4}$ (c.a.o.) A1

- 8. (a) f(-2) = 15Either: When f(x) is divided by x + 2, the remainder is 15 Or: x + 2 is not a factor of f(x)[f.t. candidate's value for f(-2)] E1
 - (b) Attempting to find f(r) = 0 for some value of r M1 $f(-1) = 0 \Rightarrow x + 1$ is a factor A1 $f(x) = (x + 1)(2x^2 + ax + b)$ with one of a, b correct M1 $f(x) = (x + 1)(2x^2 + 9x - 5)$ A1 f(x) = (x + 1)(x + 5)(2x - 1) (f.t. only $2x^2 - 9x - 5$ in above line) A1 Roots are x = -1, -5, 1/2(f.t. only from (x + 1)(x - 5)(2x + 1) in above line) A1

Special case

Candidates who, after having found x + 1 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1

9. (*a*)



Concave down curve and <i>y</i> -coordinate of maximum = 5	B1
x-coordinate of maximum = 4	B1
Both points of intersection with <i>x</i> -axis	B1

(b)
$$y = f(x-4)$$
 B2
If B2 not awarded

$$y = f(x+4)$$
B1

10. (a)
$$\frac{dy}{dx} = 3x^2 - 12x$$
 B1
Putting derived $\frac{dy}{dx} = 0$ M1
 $x = 0, 4$ (both correct) (f.t. candidate's $\frac{dy}{dx}$ A1

Stationary points are (0, 20) and (4, -12) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding **either** (0, 20) is a maximum point **or** (4, -12) is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1

(0, 20) (0,

(b)

Graph in shape of a positive cubic with two turning points M1 Correct marking of both stationary points (f.t. candidate's derived maximum and minimum points) A1

(<i>c</i>)	Use of both $k = -12$, $k = 20$ to find the range of values for k			
		(f.t. candidate's <i>y</i> -values at stationary points)	M1	
	-12 < k < 20	(f.t. candidate's <i>y</i> -values at stationary points)	A1	