Mathematics C1 January 2010

Solutions and Mark Scheme

Final Version

1. (a) Gradient of $B C=\underline{\text { increase in } y} \quad$ M1 increase in x Gradient of $B C=-1 / 2 \quad$ (or equivalent)
(b) (i) Use of gradient $L_{1}=$ gradient $B C \quad$ M1
A correct method for finding the equation of L_{1} using candidate's gradient for L_{1} M1
Equation of $L_{1}: \quad y-10=-1 / 2[x-(-11)] \quad$ (or equivalent)
(f.t. candidate's gradient for $B C$) A1
Equation of $L_{1}: \quad x+2 y-9=0 \quad$ (convincing)A1
(ii) Use of gradient $L_{2} \times$ gradient $B C=-1 \quad$ M1
A correct method for finding the equation of L_{2} using
candidate's gradient for L_{2}
(to be awarded only if corresponding M1 is not awarded in part (b)(i))
Equation of $L_{2}: \quad y-8=2(x-3) \quad$ (or equivalent)
(f.t. candidate's gradient for $B C$) A1
(c) (i) An attempt to solve equations of L_{1} and L_{2} simultaneously M1 $x=1, y=4$
(convincing.) A1
(ii) A correct method for finding the length of $B D$ M1
$B D=10 \quad \mathrm{~A} 1$
(iii) A correct method for finding the coordinates of the mid-point of $B D$
Mid-point of $B D$ has coordinates $(-2,8)$ A1
2.

(a) $\frac{2 \sqrt{ } 11-3}{\sqrt{ } 11+2}=\frac{(2 \sqrt{ } 11-3)(\sqrt{ } 11-2)}{(\sqrt{ } 11+2)(\sqrt{ } 11-2)}$

Numerator: $\quad 22-4 \sqrt{ } 11-3 \sqrt{ } 11+6 \quad$ A1
Denominator: 11-4 A1
$\frac{2 \sqrt{ } 11-3}{\sqrt{ } 11+2}=4-\sqrt{ } 11 \quad$ (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{ } 11+2$
(b) $\frac{22}{\sqrt{2}}=11 \sqrt{ } 2$

$$
\begin{equation*}
\sqrt{ } 50=5 \sqrt{ } 2 \tag{B1}
\end{equation*}
$$

$(\sqrt{2})^{5}=4 \sqrt{ } 2$
B1
$\frac{22}{\sqrt{2}}-\sqrt{ } 50-(\sqrt{ } 2)^{5}=2 \sqrt{ } 2$
(c.a.o.) B1
3. An attempt to differentiate, at least one non-zero term correct
$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \times-2 \times x^{-3}+\frac{7}{4}$
An attempt to substitute $x=2$ in candidate's derived expression for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ M1
Value of $\underline{\mathrm{d} y}$ at $P=\underline{1}$ (c.a.o.) A1
Gradient of normal $=\frac{-1}{\text { candidate's derived value for } \underline{\mathrm{d} y}}$
Equation of normal to C at $P: \quad y-3=-4(x-2) \quad$ (or equivalent)
(f.t. candidate's value for $\underline{d} \underline{y}$ provided all three M1's are awarded) $\mathrm{d} x$

B1
B1
B1
(b) $\quad \frac{1}{c}$ on its own or greatest value $=\frac{1}{c}$, with correct explanation or no explanation

$\frac{1}{c}$ on its own or greatest value $=\frac{1}{c}$, with incorrect explanation	B1
least value $=\frac{1}{c}$ with no explanation	B1
least value $=\frac{1}{c}$ with incorrect explanation	B0

5. (a) An expression for $b^{2}-4 a c$, with at least two of a, b or c correct

$$
b^{2}-4 a c<0 \quad \mathrm{ml}
$$

$$
k<-9 / 20
$$

(f.t. only for $k>9 / 20$ from $b^{2}-4 a c=3^{2}-4 \times k \times 5$)
(b) Finding critical values $x=-1 \cdot 5, x=2$

A statement (mathematical or otherwise) to the effect that $x<-1 \cdot 5$ or $2<x$
(f.t critical values $\pm 1 \cdot 5, \pm 2$ only) B2

Deduct 1 mark for each of the following errors
the use of \leq rather than $<$
the use of the word 'and' instead of the word 'or'
6. (a) $y+\delta y=3(x+\delta x)^{2}-7(x+\delta x)-5$

Subtracting y from above to find δy M1
$\delta y=6 x \delta x+3(\delta x)^{2}-7 \delta x$
A1
Dividing by δx and letting $\delta x \rightarrow 0$ M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=6 x-7$
(c.a.o.) A1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \times \frac{5}{2} \times x^{3 / 2}$

B1
Substituting $x=4$ in candidate's expression for $\underline{d} y$ and putting
expression equal to -2
M1 $a=-\frac{1}{10}$
(c.a.o.) A1
7. Coefficient of $x={ }^{5} \mathrm{C}_{1} \times a^{4} \times 3(x)$

B1
Coefficient of $x^{2}={ }^{5} \mathrm{C}_{2} \times a^{3} \times 3^{2}\left(x^{2}\right)$
B1
$10 \times a^{3} \times m=k \times 5 \times a^{4} \times 3 \quad$ (o.e.) $\quad(m=9$ or $3, k=8$ or $1 / 8) \quad$ M1 $a=\underline{3}$
(c.a.o.) A1
8. (a) $f(-2)=15$

Either:
Or:

When $f(x)$ is divided by $x+2$, the remainder is 15 $x+2$ is not a factor of $f(x)$
[f.t. candidate's value for $f(-2)$]
(b) Attempting to find $f(r)=0$ for some value of r M1
$f(-1)=0 \Rightarrow x+1$ is a factor A1
$f(x)=(x+1)\left(2 x^{2}+a x+b\right)$ with one of a, b correct M1 $f(x)=(x+1)\left(2 x^{2}+9 x-5\right) \quad$ A1 $f(x)=(x+1)(x+5)(2 x-1) \quad$ (f.t. only $2 x^{2}-9 x-5$ in above line) A1
Roots are $x=-1,-5,1 / 2$
(f.t. only from $(x+1)(x-5)(2 x+1)$ in above line) A

Special case

Candidates who, after having found $x+1$ as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1
9. (a)

Concave down curve and y-coordinate of maximum $=5$
B1
x-coordinate of maximum $=4 \quad$ B1
Both points of intersection with x-axis
B1
(b) $y=f(x-4)$

If B2 not awarded
$y=f(x+4)$
B1
10. (a) $\underline{\mathrm{d} y}=3 x^{2}-12 x$
$\mathrm{d} x$
Putting derived $\underline{\mathrm{d} y}=0$
$x=0,4 \quad$ (both correct
(f.t. candidate's $\underline{d y}$)

A1 $\mathrm{d} x$
Stationary points are $(0,20)$ and $(4,-12)$ (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding either $(0,20)$ is a maximum point
or $(4,-12)$ is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1
(b)

Graph in shape of a positive cubic with two turning points
(f.t. candidate's derived maximum and minimum points) A1
(c) Use of both $k=-12, k=20$ to find the range of values for k (f.t. candidate's y-values at stationary points) M1 $-12<k<20 \quad$ (f.t. candidate's y-values at stationary points) A1

