Mathematics C1 May 2009

Solutions and Mark Scheme

1.	(<i>a</i>)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$ M1	1
		Gradient of $BC = \frac{3}{4}$ (or equivalent) A1	1
	(<i>b</i>)	A correct method for finding C M1 $C(3, 8)$ A1	
	(c)	Use of $m_{AB} \times m_L = -1$ to find gradient of L M1	1
		A correct method for finding the equation of L using candidate's coordinates for C and candidate's gradient for L . M1	1
		Equation of L: $y-8 = -\frac{4}{3}(x-3)$ (or equivalent) (f.t. candidate's coordinates for C and candidate's gradient for L) A1	1
		Equation of L: $4x + 3y - 36 = 0$ (convincing, c.a.o.) A1	1
	(<i>d</i>)	(i) Substituting $y = 0$ in equation of L M1 D(9, 0) A1	
		(ii) A correct method for finding the length of $CD(AC)$ M1 CD = 10 (f.t. candidate's coordinates for C and D) A1	
		(iii) $AC = 5$ $\tan C\hat{AD} = \underline{CD} = 2$ (f.t. candidate's coordinates for C) A1 (or $^{10}/_5$ or equivalent)	1
		(f.t. candidate's derived values for CD and AC) B1	1

2. (a)
$$\frac{8-\sqrt{7}}{\sqrt{7}-2} = \frac{(8-\sqrt{7})(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}$$
 M1

Numerator: $8\sqrt{7} + 16 - 7 - 2\sqrt{7}$ A1

Denominator:
$$7-4$$
 A1

$$\frac{8 - \sqrt{7}}{\sqrt{7} - 2} = \frac{6\sqrt{7} + 9}{3} = 2\sqrt{7} + 3$$
 (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{7} - 2$

(b)
$$\sqrt{50} = 5\sqrt{2}$$
 B1
 $\sqrt{3} \times \sqrt{6} = 3\sqrt{2}$ B1

$$\sqrt{3} \times \sqrt{6} = 3\sqrt{2}$$
 B1
 $-\frac{14}{10} = -7\sqrt{2}$ B1

$$-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

$$\sqrt{50} + (\sqrt{3} \times \sqrt{6}) - \frac{14}{\sqrt{2}} = \sqrt{2}$$
 (c.a.o.) B1

3. $\underline{dy} = 4x + 6$ (an attempt to differentiate, at least dx one non-zero term correct) M1 An attempt to substitute x = -1 in candidate's expression for \underline{dy} m1 dxGradient of tangent at P = 2 (c.a.o.) A1

y-coordinate at P = 3Equation of tangent at P: y-3=2[x-(-1)] (or equivalent) (f.t. one slip provided both M1 and m1 awarded) A1

4. (<i>a</i>)) (i) (ii)	· · · · · · · · · · · · · · · · · · ·	r equivalent) r equivalent) - b		B1 B1 B1
(b)	An att	-7 = 2x + 3 empt to collect term $x - 10 = 0 \Rightarrow (x - 5)$		solve quadratic equation $\Rightarrow x = 5, x = -2$ (both values, c.a.o.)	M1 m1

When
$$x = 5$$
, $y = 13$, when $x = -2$, $y = -1$
(both values f.t. one slip) A1
The line $y = 2x + 3$ intersects the curve $y = x^2 - x - 7$ at the points

(-2, -1) and (5, 13) (f.t. candidate's points) E1

5. (a)
$$y + \delta y = 4(x + \delta x)^2 - 5(x + \delta x) - 3$$

Subtracting y from above to find δy
 $\delta y = 8x\delta x + 4(\delta x)^2 - 5\delta x$
Dividing by δx and letting $\delta x \to 0$
 $\frac{dy}{dx} = \liminf_{\delta x \to 0} \frac{\delta y}{\delta x} = 8x - 5$
(c.a.o.) A1

(b) Required derivative =
$$7 \times \frac{3}{4} \times x^{-1/4} - 2 \times (-4) \times x^{-5}$$
 B1, B1

6. (a) An expression for
$$b^2 - 4ac$$
, with at least two of a, b, c correct M1
 $b^2 - 4ac = (2k)^2 - 4(k+1)(k-1)$ A1
 $b^2 - 4ac = 4$ (c.a.o.) A1

candidate's value for
$$b^2 - 4ac > 0$$
 (\Rightarrow two distinct real roots) A1

(b) Finding critical values
$$x = -2$$
, $x = \frac{3}{5}$ B1
 $-2 \le x \le \frac{3}{5}$ or $\frac{3}{5} \ge x \ge -2$ or $[-2, \frac{3}{5}]$ or $-2 \le x$ and $x \le \frac{3}{5}$
or a correctly worded statement to the effect that x lies between
 -2 and $\frac{3}{5}$ (both inclusive)
(f.t. critical values $\pm 2, \pm \frac{3}{5}$) B2
Note: $-2 < x < \frac{3}{5}, -2 \le x, x \le \frac{3}{5}, -2 \le x \text{ or } x \le \frac{3}{5}, -2 \le x \text{ or } x \le \frac{3}{5}$
all earn B1

7. (a)
$$\left(x+\frac{2}{x}\right)^4 = x^4 + 4x^3\left(\frac{2}{x}\right) + 6x^2\left(\frac{2}{x}\right)^2 + 4x\left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$$
 (three terms corrected)

(three terms correct) B1

B2 (all terms correct)

$$\left(x+\frac{2}{x}\right)^4 = x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4}$$
 (three terms correct) B1

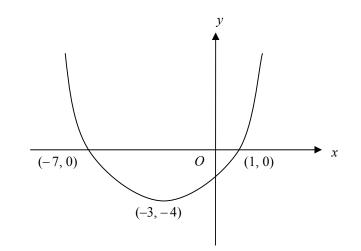
(all terms correct) B2

(-1 for incorrect further 'simplification')

(b) A correct equation in *n*, including
$${}^{n}C_{2} = 55$$
 M1

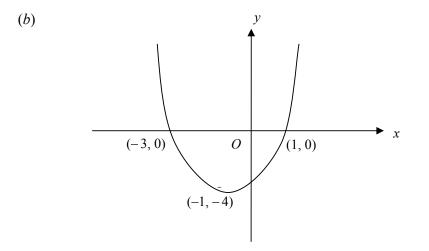
$$n = 11, -10$$
 (c.a.o.) A1
 $n = 11$ (f.t. $n = 10$ from $n = -11, 10$) A1

11 (f.t.
$$n = 10$$
 from $n = -11, 10$) A1


8. (a) Use of
$$f(-1) = -3$$

 $-a - 1 + 6 + 5 = -3 \Rightarrow a = 2$
A1

(b) Attempting to find
$$f(r) = 0$$
 for some value of r M1
 $f(2) = 0 \Rightarrow x - 2$ is a factor A1
 $f(x) = (x - 2)(8x^2 + ax + b)$ with one of a, b correct M1
 $f(x) = (x - 2)(8x^2 + 2x - 3)$ A1
 $f(x) = (x - 2)(4x + 3)(2x - 1)$ (f.t. only $8x^2 - 2x - 3$ in above line) A1
Special case
Candidates who, after having found $x - 2$ as one factor, then find one


Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 3 marks

M1

9. (*a*)

Concave up curve and y-coordinate of minimum $= -4$	B1
x-coordinate of minimum $= -3$	B1
Both points of intersection with x-axis	B1

Concave up curve and <i>y</i> -coordinate of minimum $= -4$	B1
<i>x</i> -coordinate of minimum $= -1$	B1
Both points of intersection with <i>x</i> -axis	B1

10.	<i>(a)</i>	$\underline{dy} = 3x^2 - 6x + 3$	B1
		dx	
		Putting derived $\underline{dy} = 0$	M1
		dx	
		$3(x-1)^2 = 0 \Longrightarrow x = 1$	A1
		$x = 1 \Rightarrow y = 6 \Rightarrow$ stationary point is at (1, 6) (c.a.o)	A1
	<i>(b)</i>	Either:	
	(\mathcal{O})	An attempt to consider value of \underline{dy} at $x = 1^{-}$ and $x = 1^{+}$	M1
		$\frac{dy}{dx}$	1411
		dy has same sign at $x = 1^-$ and $x = 1^+ \Rightarrow (1, 6)$ is a point of inflection	h
		$\frac{dy}{dx}$ has same sign at x = 1 and x = 1 \Rightarrow (1, 0) is a point of innection dx	A1
		Or:	ЛІ
			M1
		An attempt to find value of $\frac{d^2 y}{dx^2}$ at $x = 1$, $x = 1^-$ and $x = 1^+$	1111
		$\frac{d^2 y}{dx^2} = 0$ at $x = 1$ and $\frac{d^2 y}{dx^2}$ has different signs at $x = 1^-$ and $x = 1^+$	
		dx^2 dx^2	
		\Rightarrow (1, 6) is a point of inflection	A1
		Or:	
		An attempt to find the value of y at $x = 1^{-1}$ and $x = 1^{+1}$	M1
		Value of y at $x = 1^- < 6$ and value of y at $x = 1^+ > 6 \Rightarrow (1, 6)$ is a po	int
		of inflection $(1, 0)$ is a point value of y at $x = 1 + 0 \implies (1, 0)$ is a point of the second secon	A1
		Or:	111
			M1
		An attempt to find values of $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ at $x = 1$	1411
		$d^2v = 0$ and $d^3v \neq 0$ at $r = 1 \rightarrow (1, 6)$ is a point of inflection	A1
		$\frac{d^2 y}{dr^2} = 0$ and $\frac{d^3 y}{dr^3} \neq 0$ at $x = 1 \Rightarrow (1, 6)$ is a point of inflection	111
		un un	