Mathematics C1 May 2009

Solutions and Mark Scheme

1. (a) Gradient of $A B=\underline{\text { increase in } y} \quad$ M1 increase in x
Gradient of $B C=3 / 4 \quad$ (or equivalent)
(b) A correct method for finding C
(c) Use of $m_{A B} \times m_{L}=-1$ to find gradient of L

A correct method for finding the equation of L using candidate's coordinates for C and candidate's gradient for L.

Equation of $L: \quad y-8=-4 / 3(x-3) \quad$ (or equivalent) (f.t. candidate's coordinates for C and candidate's gradient for L) A1

Equation of $L: \quad 4 x+3 y-36=0 \quad$ (convincing, c.a.o.) A1
(d) (i) Substituting $y=0$ in equation of $L \quad$ M1
$D(9,0)$
(ii) A correct method for finding the length of $C D(A C) \quad \mathrm{M} 1$ $C D=10 \quad$ (f.t. candidate's coordinates for C and D) A1
(iii) $A C=5$ (f.t. candidate's coordinates for C) $\tan C \hat{A} D=\frac{C D}{A C}=2 \quad$ (or ${ }^{10} / 5$ or equivalent) (f.t. candidate's derived values for $C D$ and $A C$)
2. (a) $\frac{8-\sqrt{7}}{\sqrt{7}-2}=\frac{(8-\sqrt{7})(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}$

Numerator: $\quad 8 \sqrt{7}+16-7-2 \sqrt{7}$
Denominator: $7-4$
$\frac{8-\sqrt{7}}{\sqrt{7}-2}=\frac{6 \sqrt{7}+9}{3}=2 \sqrt{7}+3$
(c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{7}-2$
(b)

$$
\begin{align*}
& \sqrt{50}=5 \sqrt{2} \\
& \sqrt{3} \times \sqrt{6}=3 \sqrt{2} \\
& -\frac{14}{\sqrt{2}}=-7 \sqrt{2} \\
& \sqrt{50}+(\sqrt{3} \times \sqrt{6})-\frac{14}{\sqrt{2}}=\sqrt{2} \tag{c.a.o.}
\end{align*}
$$

B1
B1
B1
3. $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+6 \quad$ (an attempt to differentiate, at least
$\mathrm{d} x$ one non-zero term correct)
M1
An attempt to substitute $x=-1$ in candidate's expression for $\underline{d y}$
Gradient of tangent at $P=2$
y-coordinate at $P=3$
Equation of tangent at $P: \quad y-3=2[x-(-1)] \quad$ (or equivalent)
(f.t. one slip provided both M1 and m 1 awarded)
4. (a)
(i) $\begin{array}{ll}a=-2.5 & \text { (or equivalent) } \\ b=1.75 & \text { (or equivalent) }\end{array}$
(ii) Greatest value $=-b \quad$ (or equivalent)
(b) $x^{2}-x-7=2 x+3$

An attempt to collect terms, form and solve quadratic equation ml $x^{2}-3 x-10=0 \Rightarrow(x-5)(x+2)=0 \Rightarrow x=5, x=-2$
(both values, c.a.o.)
When $x=5, y=13$, when $x=-2, y=-1$
(both values f.t. one slip) A1
The line $y=2 x+3$ intersects the curve $y=x^{2}-x-7$ at the points $(-2,-1)$ and $(5,13)$
(f.t. candidate's points) E1
5.

$$
y+\delta y=4(x+\delta x)^{2}-5(x+\delta x)-3
$$

Subtracting y from above to find δy
$\delta y=8 x \delta x+4(\delta x)^{2}-5 \delta x$
Dividing by δx and letting $\delta x \rightarrow 0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=8 x-5$ (c.a.o.) A1
(b) Required derivative $=7 \times \frac{3}{4} \times x^{-1 / 4}-2 \times(-4) \times x^{-5}$

B1, B1
6. (a) An expression for $b^{2}-4 a c$, with at least two of a, b, c correct
$b^{2}-4 a c=(2 k)^{2}-4(k+1)(k-1)$
$b^{2}-4 a c=4 \quad$ (c.a.o.)
candidate's value for $b^{2}-4 a c>0(\Rightarrow$ two distinct real roots $)$
(b) Finding critical values $x=-2, x=3 / 5$
$-2 \leq x \leq 3 / 5$ or $3 / 5 \geq x \geq-2$ or $[-2,3 / 5]$ or $-2 \leq x$ and $x \leq 3 / 5$ or a correctly worded statement to the effect that x lies between - 2 and $3 / 5$ (both inclusive)
(f.t. critical values $\pm 2, \pm 3 / 5$)

Note: $-2<x<3 / 5$,
$-2 \leq x, x \leq 3 / 5$
$-2 \leq x \quad x \leq 3 / 5$
$-2 \leq x$ or $x \leq 3 / 5$
all earn B1
7.
(a) $\left(x+\frac{2}{x}\right)^{4}=x^{4}+4 x^{3}\left(\frac{2}{x}\right)+6 x^{2}\left(\frac{2}{x}\right)^{2}+4 x\left(\frac{2}{x}\right)^{3}+\left(\frac{2}{x}\right)^{4}$
(three terms correct) B1 (all terms correct) B2
$\left(x+\frac{2}{x}\right)^{4}=x^{4}+8 x^{2}+24+\frac{32}{x^{2}}+\frac{16}{x^{4}} \quad$ (three terms correct)
(all terms correct)
(-1 for incorrect further 'simplification')
(b) A correct equation in n, including ${ }^{n} C_{2}=55$
$n=11,-10$
$n=11$
(f.t. $n=10$ from $n=-11,10$)

A1
A1
8. (a) Use of $f(-1)=-3 \quad$ M1

$$
-a-1+6+5=-3 \Rightarrow a=2
$$

A1
(b) Attempting to find $f(r)=0$ for some value of r M1 $f(2)=0 \Rightarrow x-2$ is a factor A1 $f(x)=(x-2)\left(8 x^{2}+a x+b\right)$ with one of a, b correct M1 $f(x)=(x-2)\left(8 x^{2}+2 x-3\right) \quad$ A1 $f(x)=(x-2)(4 x+3)(2 x-1) \quad$ (f.t. only $8 x^{2}-2 x-3$ in above line) A1 Special case
Candidates who, after having found $x-2$ as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 3 marks
9. (a)

Concave up curve and y-coordinate of minimum $=-4$
x-coordinate of minimum $=-3$
Both points of intersection with x-axis
(b)

Concave up curve and y-coordinate of minimum $=-4$
B1
x-coordinate of minimum $=-1$
B1
Both points of intersection with x-axis
10. (a) $\underline{\mathrm{d} y}=3 x^{2}-6 x+3$
d x
Putting derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$3(x-1)^{2}=0 \Rightarrow x=1$
$x=1 \Rightarrow y=6 \Rightarrow$ stationary point is at $(1,6)$
(c.a.o) A1
(b) Either:

An attempt to consider value of $\underline{\mathrm{d} y}$ at $x=1^{-}$and $x=1^{+}$ M1 $\mathrm{d} x$
$\underline{\mathrm{d} y}$ has same sign at $x=1^{-}$and $x=1^{+} \Rightarrow(1,6)$ is a point of inflection
$\mathrm{d} x$
Or:
An attempt to find value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $x=1, x=1^{-}$and $x=1^{+}$ M1
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ at $x=1$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ has different signs at $x=1^{-}$and $x=1^{+}$
$\Rightarrow(1,6)$ is a point of inflection
Or:
An attempt to find the value of y at $x=1^{-}$and $x=1^{+}$
Value of y at $x=1^{-}<6$ and value of y at $x=1^{+}>6 \Rightarrow(1,6)$ is a point of inflection
Or:
An attempt to find values of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ at $x=1$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}} \neq 0$ at $x=1 \Rightarrow(1,6)$ is a point of inflection

