Mathematics C1 January 2009

Solutions and Mark Scheme

Final Version

1.	(<i>a</i>)	Gradient of $BC = \frac{\text{increase in } y}{\text{increase in } x}$	M1
		Gradient of $BC = \frac{1}{4}$ (or equivalent)	A1
		A correct method for finding the equation of $BC(AD)$ using candid	late's
		gradient for BC	M1
		Equation of BC: $y-4 = \frac{1}{4}(x-5)$ (or equivalent)	
		(f.t. candidate's gradient for <i>BC</i>)	A1
		Equation of BC : $x - 4y + 11 = 0$ (convincing)	A1
		Use of $m_{AB} \times m_{CD} = -1$	M1
		Equation of AD : $y - (-1) = -4(x - 2)$ (or equivalent)	
		(f.t. candidate's gradient of <i>BC</i>)	A1
		Special case:	
		Verification of equation of <i>BC</i> by substituting coordinates of both	
		<i>B</i> and <i>C</i> into the given equation	M1
		Making an appropriate statement	A1
	<i>(b)</i>	An attempt to solve equations of <i>BC</i> and <i>AD</i> simultaneously	M1
	(b)	x = 1, y = 3 (convincing) (c.a.o.	
		Special case) 1 1 1
		Substituting $(1, 3)$ in equations of both <i>BC</i> and <i>AD</i>	M1
		Convincing argument that coordinates of D are $(1, 3)$	A1
	(<i>c</i>)	A correct method for finding the length of <i>CD</i>	M1
		$CD = \sqrt{17}$	A1
	(d)	A correct method for finding <i>E</i>	M1
		E(0,7)	A1

2. (a)
$$\frac{10\sqrt{3}-1}{4-\sqrt{3}} = \frac{(10\sqrt{3}-1)(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$$
 M1

Numerator:
$$40\sqrt{3} + 10 \times 3 - 4 - \sqrt{3}$$

Denominator: $16 - 3$
 $10\sqrt{3} - 1 = \frac{39\sqrt{3} + 26}{13} = 3\sqrt{3} + 2$
(c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4-\sqrt{3}$

(b)
$$(2 + \sqrt{5})(5 - \sqrt{20}) = 10 - 2\sqrt{20} + 5\sqrt{5} - \sqrt{5} \times \sqrt{20}$$

(4 terms, at least 3 correct) M1
 $\sqrt{20} = 2\sqrt{5}$ B1
 $\sqrt{5} \times \sqrt{20} = 10$ B1
 $(2 + \sqrt{5})(5 - \sqrt{20}) = \sqrt{5}$ (c.a.o.) A1

Alternative Mark Scheme

$(2+\sqrt{5})(5-\sqrt{20}) = (2+\sqrt{5})(5-2\sqrt{5})$	B1
$(2+\sqrt{5})(5-2\sqrt{5}) = 10 - 4\sqrt{5} + 5\sqrt{5} - \sqrt{5} \times 2\sqrt{5}$	
(4 terms, at least 3 correct)	M1
$\sqrt{5} \times 2\sqrt{5} = 10$	B1
$(2 + \sqrt{5})(5 - \sqrt{20}) = \sqrt{5}$ (c.a.o.) A1

3. (a) $dy = 2x - 9$ (an attempt to differentiate, at 1)	east
$\frac{dx}{dx}$ one non-zero term corr	
An attempt to substitute $x = 6$ in candidate's expression for	· · · · · · · · · · · · · · · · · · ·
	dx
Gradient of tangent at $P = 3$	(c.a.o.) A1
Equation of tangent at P: $y - (-5) = 3(x - 6)$ (or equation of tangent at P: $y - (-5) = 3(x - 6)$)	1 /
(f.t. candidate's value for dy provided both M1 and m1 av	warded) A1
dx	
	2.61
(b) Use of gradient of tangent at $Q \times \frac{1}{7} = -1$	M1
Equating candidate's expression for dy and candidate's variables variables dy and candidate variables variables dy and dy	alue for
dx	
gradient of tangent at Q	ml
$2x - 9 = -7 \Rightarrow x = 1$ (f.t. candidate's expression	
	dx
4	D1
4. $a = 3$ b = -2	B1 B1

$\mathcal{B} = -\mathcal{L}$	BI
<i>c</i> = 5	B1
A positive quadratic graph	M1
Minimum point $(-b, c)$	A1

An expression for $b^2 - 4ac$, with at least two of *a*, *b*, *c* correct 5. M1 $b^{2} - 4ac = 8^{2} - 4 \times (3k - 2) \times k$ Putting $b^{2} - 4ac < 0$ A1 m1 $3k^2 - 2k - 16 > 0$ (convincing) A1 Finding critical points k = -2, $k = \frac{8}{3}$ **B**1 A statement (mathematical or otherwise) to the effect that $k < -2 \text{ or } {}^8/_3 < k$ (or equivalent) (f.t. candidate's critical points) B2 Deduct 1 mark for each of the following errors the use of non-strict inequalities the use of the word 'and' instead of the word 'or'

6. (a)
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
 (-1 for each error)
(-1 for any subsequent 'simplification') B2

(b) An expression containing $k \times (1/4)^2 \times (2x)^3$, where k is an integer $\neq 1$ and is either the candidate's coefficient for the a^2b^3 term in (a) or is derived from first principles M1 Coefficient of $x^3 = 5$ (c.a.o.) A1

7. (a) An attempt to calculate
$$3^3 - 17$$
 M1
Remainder = 10 A1

Attempting to find f(r) = 0 for some value of r*(b)* M1 $f(2) = 0 \implies x - 2$ is a factor A1 $f(x) = (x-2)(6x^2 + ax + b)$ with one of a, b correct M1 $f(x) = (x-2)(6x^2 + 5x - 4)$ A1 f(x) = (x-2)(3x+4)(2x-1) (f.t. only $6x^2 - 5x - 4$ in above line) A1 Roots are $x = 2, -\frac{4}{3}, \frac{1}{2}$ (f.t. for factors $3x \pm 4$, $2x \pm 1$) A1 **Special case** Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded

B1

8. (a)
$$y + \delta y = 7(x + \delta x)^2 + 5(x + \delta x) - 2$$

Subtracting y from above to find δy
 $\delta y = 14x\delta x + 7(\delta x)^2 + 5\delta x$
Dividing by δx and letting $\delta x \rightarrow 0$
 $\frac{dy}{dx} = \liminf_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} = 14x + 5$
(c.a.o.) A1

(b) Required derivative =
$$2 \times (-3) \times x^{-4} + 5 \times (^2/_3) \times x^{-1/3}$$
 B1, B1

9. (*a*)

Concave up curve and <i>y</i> -coordinate of minimum $=$ -3	B1
x-coordinate of minimum = 5	B1
Both points of intersection with x-axis	B1

(*b*)

Concave down curve and <i>x</i> -coordinate of maximum $= 2$	B1
<i>y</i> -coordinate of maximum = 6	B1
Both points of intersection with <i>x</i> -axis	B1

10. (a)
$$\frac{dy}{dx} = 3x^2 + 6x - 9$$

Putting derived $\frac{dy}{dx} = 0$
 $x = -3, 1$ (both correct) (f.t. candidate's $\frac{dy}{dx}$) A1

Stationary points are (-3, 14) and (1, -18) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding **either** (-3, 14) is a maximum point **or** (1, -18) is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1

(b)

Graph in shape of a positive cubic with two turning points M1 Correct marking of both stationary points

(f.t. candidate's derived maximum and minimum points) A1

(c) A statement identifying the number of roots as the number of times the curve crosses the x-axis (any curve)
 M1 Correct interpretation of the number of roots from the candidate's cubic graph.
 A1