Mathematics C1 January 2009

Solutions and Mark Scheme

Final Version

1. (a) Gradient of $B C=\underline{\text { increase in } y}$ M1
increase in x
Gradient of $B C=1 / 4$
Gradient of $B C=1 / 4$ (or equivalent) (or equivalent) A1 A1
A correct method for finding the equation of $B C(A D)$ using candidate's gradient for $B C$ M1
Equation of $B C$: $y-4=1 / 4(x-5) \quad$ (or equivalent)
(f.t. candidate's gradient for $B C$) A1
Equation of $B C: \quad x-4 y+11=0 \quad$ (convincing) A1
Use of $m_{A B} \times m_{C D}=-1$ M1
Equation of $A D: \quad y-(-1)=-4(x-2) \quad$ (or equivalent)
(f.t. candidate's gradient of $B C$) A1
Special case:
Verification of equation of $B C$ by substituting coordinates of bothB and C into the given equationM1
Making an appropriate statement A1
(b) An attempt to solve equations of $B C$ and $A D$ simultaneously M1
$x=1, y=3$ (convincing) (c.a.o.) A1
Special case
Substituting $(1,3)$ in equations of both $B C$ and $A D$ M1
Convincing argument that coordinates of D are $(1,3)$ A1
(c) A correct method for finding the length of $C D$ M1
$C D=\sqrt{ } 17$ A1
(d) A correct method for finding E M1
$E(0,7)$ A1
2.

(a) $\frac{10 \sqrt{ } 3-1}{4-\sqrt{ } 3}=\frac{(10 \sqrt{ } 3-1)(4+\sqrt{ } 3)}{(4-\sqrt{ } 3)(4+\sqrt{ } 3)}$

Numerator: $\quad 40 \sqrt{ } 3+10 \times 3-4-\sqrt{ } 3 \quad$ A1
Denominator: $16-3$ A1
$\frac{10 \sqrt{3}-1}{4-\sqrt{3}}=\frac{39 \sqrt{ } 3+26}{13}=3 \sqrt{3}+2 \quad$ (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4-\sqrt{ } 3$
(b) $\quad(2+\sqrt{ } 5)(5-\sqrt{ } 20)=10-2 \sqrt{ } 20+5 \sqrt{ } 5-\sqrt{ } 5 \times \sqrt{ } 20$
(4 terms, at least 3 correct) M1
$\sqrt{ } 20=2 \sqrt{ } 5 \quad$ B1
$\sqrt{ } 5 \times \sqrt{ } 20=10 \quad$ B1
$(2+\sqrt{ } 5)(5-\sqrt{ } 20)=\sqrt{ } 5$
(c.a.o.) A1

Alternative Mark Scheme

$$
\begin{aligned}
& (2+\sqrt{ } 5)(5-\sqrt{ } 20)=(2+\sqrt{ } 5)(5-2 \sqrt{ } 5) \\
& \text { B1 } \\
& (2+\sqrt{ } 5)(5-2 \sqrt{ } 5)=10-4 \sqrt{ } 5+5 \sqrt{ } 5-\sqrt{ } 5 \times 2 \sqrt{ } 5 \\
& \text { (4 terms, at least } 3 \text { correct) M1 } \\
& \sqrt{ } 5 \times 2 \sqrt{ } 5=10 \\
& \text { B1 } \\
& (2+\sqrt{ } 5)(5-\sqrt{ } 20)=\sqrt{ } 5 \\
& \text { (c.a.o.) A1 }
\end{aligned}
$$

3. (a) $\underline{\mathrm{d} y}=2 x-9$ (an attempt to differentiate, at least
$\mathrm{d} x \quad$ one non-zero term correct) M1
An attempt to substitute $x=6$ in candidate's expression for $\underline{\mathrm{d} y} \mathrm{~m} 1$ $\mathrm{d} x$
Gradient of tangent at $P=3$ (c.a.o.) A1

Equation of tangent at $P: \quad y-(-5)=3(x-6) \quad$ (or equivalent)
(f.t. candidate's value for $\underline{d} y$ provided both M1 and m1 awarded) A1
d x
(b) Use of gradient of tangent at $Q \times 1 / 7=-1$

Equating candidate's expression for $\underline{\mathrm{d} y}$ and candidate's value for $\mathrm{d} x$
gradient of tangent at Q
m1
$2 x-9=-7 \Rightarrow x=1 \quad$ (f.t. candidate's expression for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ A1
4. $a=3$

B1
$b=-2$
B1
$c=5$
A positive quadratic graph M1
Minimum point $(-b, c)$
5. An expression for $b^{2}-4 a c$, with at least two of a, b, c correct

$$
b^{2}-4 a c=8^{2}-4 \times(3 k-2) \times k \quad \mathrm{~A} 1
$$

A statement (mathematical or otherwise) to the effect that
$k<-2$ or $\frac{8 / 3}{}<k$ (or equivalent) (f.t. candidate's critical points) B2
Deduct 1 mark for each of the following errors
the use of non-strict inequalities
the use of the word 'and' instead of the word 'or'
6. (a) $(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \quad(-1$ for each error) (-1 for any subsequent 'simplification') B2
(b) An expression containing $k \times(1 / 4)^{2} \times(2 x)^{3}$, where k is an integer $\neq 1$ and is either the candidate's coefficient for the $a^{2} b^{3}$ term in (a) or is derived from first principles Coefficient of $x^{3}=5$ (c.a.o.) A1
7. (a) An attempt to calculate $3^{3}-17$

Remainder $=10$
(b) Attempting to find $f(r)=0$ for some value of r

Special case

Candidates who, after having found $x-2$ as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1
8.
(a) $y+\delta y=7(x+\delta x)^{2}+5(x+\delta x)-2$ B1
Subtracting y from above to find δy
$\delta y=14 x \delta x+7(\delta x)^{2}+5 \delta x \quad$ A1
Dividing by δx and letting $\delta x \rightarrow 0 \quad$ M1

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=14 x+5 \tag{c.a.o.}
\end{equation*}
$$

(b) Required derivative $=2 \times(-3) \times x^{-4}+5 \times(2 / 3) \times x^{-1 / 3}$

B1, B1
9. (a)

Concave up curve and y-coordinate of minimum $=-3 \quad$ B x-coordinate of minimum $=5$
Both points of intersection with x-axis
(b)

Concave down curve and x-coordinate of maximum $=2$
Both points of intersection with x-axis
10. (a) $\underline{\mathrm{d} y}=3 x^{2}+6 x-9$
$\mathrm{d} x$
Putting derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1
$x=-3,1 \quad$ (both correct) (f.t. candidate's $\frac{\mathrm{d} y) \quad \text { A1 }}{\mathrm{d} x}$
Stationary points are $(-3,14)$ and $(1,-18) \quad$ (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding either $(-3,14)$ is a maximum point
or $(1,-18)$ is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1
(b)

Graph in shape of a positive cubic with two turning points Correct marking of both stationary points
(f.t. candidate's derived maximum and minimum points)
(c) A statement identifying the number of roots as the number of times the curve crosses the x-axis (any curve)
Correct interpretation of the number of roots from the candidate's cubic graph.

