Mathematics C1 May 2008

Solutions and Mark Scheme

1.

(a) Gradient of $A B=\underline{\text { increase in } y}$ increase in x

Gradient of $A B=-\frac{1}{2} \quad$ (or equivalent)
(b) A correct method for finding the equation of $A B$ using the candidate's value for the gradient of $A B$.
(f.t. the candidate's value for the gradient of $A B$)

Equation of $A B: \quad x+2 y-1=0$
(f.t. one error if both M1's are awarded) A1
(c) A correct method for finding the length of $A B$
$A B=\sqrt{ } 125$
(d) A correct method for finding E
$E(-2,1 \cdot 5)$
(e) Either:

An attempt to find the gradient of a line perpendicular to $A B$ using the fact that the product of the gradients of perpendicular lines $=-1 . \quad$ M1 An attempt to find the gradient of the line passing through C and D
$2=\frac{1-(-15)}{6-k} \quad$ (Equating expressions for gradient) M1
$k=-2$
(f.t. candidate's gradient of $A B$)

A1
Or:
An attempt to find the gradient of a line perpendicular to $A B$ using the fact that the product of the gradients of perpendicular lines $=-1 . \quad$ M1 An attempt to find the equation of line perpendicular to $A B$ passing through C (or D)
$-15-1=2(k-6)$
(substituting coordinates of unused point in the equation) M1
$k=-2 \quad$ (f.t. candidate's gradient of $A B$) A1
2. (a) Either:

$$
\begin{array}{ll}
\sqrt{ } 75=5 \sqrt{ } 3 & \text { B1 } \\
\frac{9}{\sqrt{3}}=3 \sqrt{ } 3 & \text { B1 } \\
\sqrt{6} \times \sqrt{ } 2=2 \sqrt{ } 3 & \text { B1 } \\
\sqrt{ } 75-\frac{9}{\sqrt{3}}+(\sqrt{ } 6 \times \sqrt{ } 2)=4 \sqrt{ } 3 & \text { (c.a.o.) } B 1
\end{array}
$$

Or:

$$
\sqrt{ } 75=\frac{15}{\sqrt{3}}
$$

$$
\sqrt{6} \times \sqrt{2}=\frac{6}{\sqrt{3}}
$$

$$
\sqrt{75}-\frac{9}{\sqrt{3}}+(\sqrt{ } 6 \times \sqrt{ } 2)=\frac{12}{\sqrt{3}}
$$

$$
\sqrt{ } 75-\frac{9}{\sqrt{ } 3}+(\sqrt{ } 6 \times \sqrt{ } 2)=4 \sqrt{ } 3
$$

(b) $\quad \frac{5 \sqrt{ } 5-2}{4+\sqrt{ } 5}=\frac{(5 \sqrt{ } 5-2)(4-\sqrt{ } 5)}{(4+\sqrt{ } 5)(4-\sqrt{ } 5)}$

Numerator: $\quad 20 \sqrt{5}-25-8+2 \sqrt{5} \quad$ A1
Denominator: 16-5 A1

$$
\frac{5 \sqrt{ } 5-2}{4+\sqrt{ } 5}=2 \sqrt{ } 5-3
$$

Special case
If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4+\sqrt{ } 5$
3. $\underline{\mathrm{d} y}=6 x-8$
$\mathrm{d} x$
(an attempt to differentiate, at least one non-zero term correct) M1
An attempt to substitute $x=2$ in candidate's expression for $\underline{d y}$
Value of $\underline{d y}$ at $P=4$
(c.a.o.) A1
$\mathrm{d} x$
Gradient of normal = \qquad
y-coordinate of $P=3$
B1
Equation of normal to C at $P: \quad y-3=-1 / 4(x-2) \quad$ (or equivalent) A1 (f.t. one slip in either candidate's value for $\underline{d y}$ or candidate's value for the $\mathrm{d} x$
y-coordinate at P provided M1and both m1's awarded)
4. (a) $y+\delta y=5(x+\delta x)^{2}+3(x+\delta x)-4$

B1
Subtracting y from above to find δy
M1
$\delta y=10 x \delta x+5(\delta x)^{2}+3 \delta x$
A1
Dividing by δx and letting $\delta x \rightarrow 0$
M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=10 x+3$
(c.a.o.) A1
(b) $\quad \underline{\mathrm{d} y}=-8 \times x^{-2}+3 \times \underline{1} \times x^{-1 / 2}$ B1, B1
$\mathrm{d} x \quad \frac{1}{2}$
Either $4^{-2}=\frac{1}{16}$ or $4^{-1 / 2}=\frac{1}{2}$
B1
$\underline{\mathrm{d} y}=\underline{1}$
(c.a.o) B1
d $x \quad 4$
5. (a) $\quad a=3$

B1
$b=-13$
(b) $2 b$ on its own or least (minimum) value $=2 b$, with correct explanation or no explanation
$x=-a$
B1
Note: Candidates who use calculus are awarded B0, B0
6. $(5+2 x)^{3}=125+150 x+60 x^{2}+8 x^{3}$

Two terms correct B1 Three terms correct B1 All 4 terms correct

B1
7. (a) Use of $f(2)=0$

M1
$32+4 p-22+q=0$
A1
Use of $f(-1)=9$ M1
$-4+p+11+q=9$
A1
Solving simultaneous equations for p and q M1
$p=-4, q=6$
(convincing) A1
Note:
Candidates who assume $p=-4, q=6$ and then verify that $x-2$ is a factor and that dividing the polynomial by $x+1$ gives a remainder of 9 may be awarded M1 A1 M1 A1 M0 A0
(b) $\quad f(x)=(x-2)\left(4 x^{2}+a x+b\right)$ with one of a, b correct
$f(x)=(x-2)\left(4 x^{2}+4 x-3\right)$
A1
$f(x)=(x-2)(2 x-1)(2 x+3) \quad$ A1
(f.t. only for $f(x)=(x-2)(2 x+1)(2 x-3)$ from $\left.4 x^{2}-4 x-3\right)$
8. (a)

Concave down curve with maximum $(1,4)$ or $(5,4) \quad$ B1
Two of the three points correct
B1
All three points correct
B1
(b)

Concave down curve with maximum $(3,7)$ or $(3,1)$
Maximum point $(3,7)$
Point of intersection with y-axis $(0,5)$
9. $\underline{\mathrm{d} y}=-6 x^{2}+6 x+12$
$\mathrm{d} x$

Putting derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	
$x=2,-1$	(both correct)	(f.t. candidate's $\frac{\mathrm{d} y)}{\mathrm{d} x}$

Stationary points are $(2,15)$ and $(-1,-12)$ (both correct)
(c.a.o) A1

A correct method for finding nature of stationary points M1
$(2,15)$ is a maximum point (f.t. candidate's derived values) A1
$(-1,-12)$ is a minimum point (f.t. candidate's derived values)
A1
10. (a) Finding critical points $x=-1 \cdot 5, x=3$

A statement (mathematical or otherwise) to the effect that $x \leq-1.5$ or $3 \leq x$ (or equivalent) (f.t. candidate's critical points)

Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or'
(b) (i) An expression for $b^{2}-4 a c$, with $b=(-) 6$ and at least one of a or c correct
$b^{2}-4 a c<0$
(ii) $3 x^{2}-4 x+7=2 x+k \quad$ M1

No points of intersection $\Leftrightarrow 3 x^{2}-6 x+(7-k)=0$ has no real
roots (allow one slip in quadratic) m 1
$4>k$
A1
(if candidate uses (b)(i), f.t. candidate's inequality for m)

