Mathematics C1 May 2008

Solutions and Mark Scheme

1.	(<i>a</i>)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1
		Gradient of $AB = -\frac{1}{2}$ (or equivalent)	A1
	(b)	A correct method for finding the equation of <i>AB</i> using the candida value for the gradient of <i>AB</i> . Equation of <i>AB</i> : $y - 4 = -\frac{1}{2}[x - (-7)]$ (or equivalent) (f.t. the candidate's value for the gradient of <i>AB</i>) Equation of <i>AB</i> : $x + 2y - 1 = 0$ (f.t. one error if both M1's are awarded)	M1 A1
	(<i>c</i>)	A correct method for finding the length of <i>AB</i> $AB = \sqrt{125}$	M1 A1
	(<i>d</i>)	A correct method for finding E E(-2, 1.5)	M1 A1
	(<i>e</i>)	Either: An attempt to find the gradient of a line perpendicular to <i>AB</i> using fact that the product of the gradients of perpendicular lines = -1. An attempt to find the gradient of the line passing through <i>C</i> and <i>D</i> $2 = \frac{1 - (-15)}{6 - k}$ (Equating expressions for gradient) k = -2 (f.t. candidate's gradient of <i>AB</i>) Or: An attempt to find the gradient of a line perpendicular to <i>AB</i> using fact that the product of the gradients of perpendicular lines = -1. An attempt to find the equation of line perpendicular to <i>AB</i> passing through <i>C</i> (or <i>D</i>) -15 - 1 = 2(k - 6) (substituting coordinates of unused point in the equation) k = -2 (f.t. candidate's gradient of <i>AB</i>)	M1 M1 M1 A1

2. (*a*)

Either:

$$\sqrt{75} = 5\sqrt{3}$$
 B1

 9 = $3\sqrt{3}$
 B1

$$\sqrt{3}$$

$$\sqrt{6} \times \sqrt{2} = 2\sqrt{3}$$
B1

$$\sqrt{75} - \frac{9}{\sqrt{3}} + (\sqrt{6} \times \sqrt{2}) = 4\sqrt{3}$$
 (c.a.o.) B1

Or:
$$\sqrt{75} = \frac{15}{\sqrt{3}}$$
 B1

$$6 \times \sqrt{2} = \frac{6}{\sqrt{3}}$$
B1

$$\sqrt{75} - \frac{9}{\sqrt{3}} + (\sqrt{6} \times \sqrt{2}) = \frac{12}{\sqrt{3}}$$
 B1

$$\sqrt{75} - \frac{9}{\sqrt{3}} + (\sqrt{6} \times \sqrt{2}) = 4\sqrt{3}$$
 (c.a.o.) B1

(b)
$$\frac{5\sqrt{5}-2}{4+\sqrt{5}} = \frac{(5\sqrt{5}-2)(4-\sqrt{5})}{(4+\sqrt{5})(4-\sqrt{5})}$$
 M1

Numerator:

$$20\sqrt{5} - 25 - 8 + 2\sqrt{5}$$
 A1

 Denominator:
 $16 - 5$
 A1

 $5\sqrt{5} - 2$
 $= 2\sqrt{5} - 3$
 (c.a.o.) A1

 $\sqrt{}$

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4 + \sqrt{5}$

 $3. \qquad \underline{dy} = 6x - 8$

dx

(an attempt to differentiate, at least one non-zero term correct)	M 1
An attempt to substitute $x = 2$ in candidate's expression for <u>dy</u>	m1
dx	

Value of
$$dy$$
 at $P = 4$ (c.a.o.) A1

 $\frac{dx}{dx}$ Gradient of normal = -1 m

radient of normal =
$$\frac{-1}{\text{candidate's value for } \frac{dy}{dx}}$$
 m1

y-coordinate of P = 3Equation of normal to C at P: $y - 3 = -\frac{1}{4}(x - 2)$ (or equivalent) A1 (f.t. **one** slip in **either** candidate's value for $\frac{dy}{dx}$ or candidate's value for the $\frac{dx}{dx}$

y-coordinate at P provided M1and both m1's awarded)

4. (a)
$$y + \delta y = 5(x + \delta x)^2 + 3(x + \delta x) - 4$$

Subtracting y from above to find δy
 $\delta y = 10x\delta x + 5(\delta x)^2 + 3\delta x$
Dividing by δx and letting $\delta x \to 0$
 $\frac{dy}{dx} = \liminf_{\delta x \to 0} \frac{\delta y}{\delta x} = 10x + 3$
(c.a.o.) A1

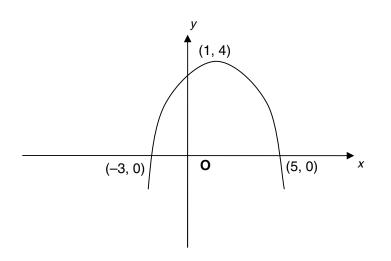
(b)
$$\frac{dy}{dx} = -8 \times x^{-2} + 3 \times \frac{1}{2} \times x^{-1/2}$$
 B1, B1

Either
$$4^{-2} = \frac{1}{16}$$
 or $4^{-1/2} = \frac{1}{2}$ B1
 $\frac{dy}{dt} = \frac{1}{16}$ (c.a.o) B1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4} \tag{c.a.o) B}$$

5. (a)
$$a = 3$$
 B1
 $b = -13$ B1
B1

(b)2b on its own or least (minimum) value = 2b, with correct explanation
or no explanationB1
B1
x = -aB1
B1Note: Candidates who use calculus are awarded B0, B0

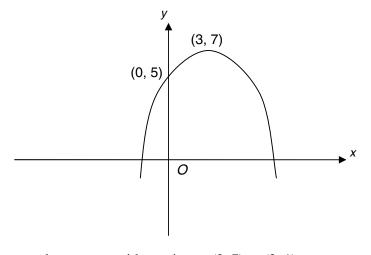

6.
$$(5+2x)^3 = 125 + 150x + 60x^2 + 8x^3$$

Two terms correct B1
Three terms correct B1
All 4 terms correct B1

7. (a) Use of
$$f(2) = 0$$

 $32 + 4p - 22 + q = 0$
Use of $f(-1) = 9$
 $-4 + p + 11 + q = 9$
Solving simultaneous equations for p and q
 $p = -4, q = 6$
Note:
Candidates who assume $p = -4, q = 6$ and then verify that $x - 2$ is a
feator and that dividing the polynomial by $x + 1$ gives a remainder of 0

factor and that dividing the polynomial by x + 1 gives a remainder of 9 may be awarded M1 A1 M1 A1 M0 A0


(b)
$$f(x) = (x-2)(4x^2 + ax + b)$$
 with one of a, b correct M1
 $f(x) = (x-2)(4x^2 + 4x - 3)$ A1
 $f(x) = (x-2)(2x-1)(2x+3)$ A1
(f.t. only for $f(x) = (x-2)(2x+1)(2x-3)$ from $4x^2 - 4x - 3$)

8. (*a*)

Concave down curve with maximum $(1, 4)$ or $(5, 4)$	B1
Two of the three points correct	B1
All three points correct	B 1

(b)

Concave down curve with maximum $(3, 7)$ or $(3, 1)$	B 1
Maximum point (3, 7)	B1
Point of intersection with y-axis $(0, 5)$	B1

dx	ag derived $\underline{dy} = 0$	B1 M1
x = 2,		A1
A corr	nary points are $(2, 15)$ and $(-1, -12)$ (both correct) (c.a.o) rect method for finding nature of stationary points	A1 M1 A1
		A1
(<i>a</i>)	Finding critical points $x = -1.5$, $x = 3$ A statement (mathematical or otherwise) to the effect that	B 1
	$x \le -1.5$ or $3 \le x$ (or equivalent) (f.t. candidate's critical points) Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or'	B2
(b)	(i) An expression for $b^2 - 4ac$, with $b = (-)6$ and at least one of	f
	(i) a or c correct $b^2 - 4ac = [(-)6]^2 - 4 \times 3 \times m$ $b^2 - 4ac < 0$ m > 3 (c.a.o.) (ii) $3x^2 - 4x + 7 = 2x + k$ No points of intersection $\Leftrightarrow 3x^2 - 6x + (7 - k) = 0$ has no re roots (allow one slip in quadratic) 4 > k (if candidate uses (b)(i), f.t. candidate's inequality for m	M1 A1 M1 A1 M1 al M1 A1
	dx Puttin $x = 2,$ Statio A cor $(2, 15)$ $(-1, -)$	Putting derived $\underline{dy} = 0$ dx $x = 2, -1$ (both correct) (f.t. candidate's \underline{dy}) Stationary points are (2, 15) and (-1, -12) (both correct) (c.a.o) A correct method for finding nature of stationary points (2, 15) is a maximum point (f.t. candidate's derived values) (-1, -12) is a minimum point (f.t. candidate's derived values) (a) Finding critical points $x = -1.5$, $x = 3$ A statement (mathematical or otherwise) to the effect that $x \le -1.5$ or $3 \le x$ (or equivalent) (f.t. candidate's critical points) Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or' (b) (i) An expression for $b^2 - 4ac$, with $b = (-)6$ and at least one of a or c correct $b^2 - 4ac < 0$ m > 3 (c.a.o.) (ii) $3x^2 - 4x + 7 = 2x + k$ No points of intersection $\Leftrightarrow 3x^2 - 6x + (7 - k) = 0$ has no re roots (allow one slip in quadratic) 4 > k