Mathematics C1

1.

$\begin{array}{rlrl}\text { (a) Gradient of } A B & =\frac{\text { increase in } y}{\text { increase in } x} & \text { M1 } \\ \text { Gradient of } A B & =-\frac{1}{3} & \text { (or equivalent) } & \text { A1 }\end{array}$
(b) A correct method for finding the equation of $A B(C D)$ using candidate's gradient for $A B$
Equation of $A B: \quad y-3=-\frac{1}{3}[x-(-2)] \quad$ (or equivalent) A1
Equation of $A B: \quad x+3 y-7=0 \quad$ (convincing) A1
Use of $m_{A B} \times m_{C D}=-1$
M1
Equation of $C D: y-8=3(x-3)$ (or equivalent)
(f.t. candidate's gradient of $A B$)

Special case:
Verification of equation of $A B$ by substituting coordinates of both A and B into the given equation
(c) An attempt to solve equations of $A B$ and $C D$ simultaneously M1
$x=1, y=2$
(convincing)
(c.a.o.)

A1

Special case

Substituting $(1,2)$ in equations of both $A B$ and $C D$
M1
Convincing argument that coordinates of D are $(1,2) \quad$ A1
(d) A correct method for finding the mid-point of $A B$

M1
$E(4,1) \quad$ A1
A correct method for finding the length of $E D$
M1
$E D=\sqrt{ } 10 \quad$ (f.t. candidate's coordinates of E)
A1
2.
(a) $\quad \sqrt{20}=2 \sqrt{ } 5$
$\sqrt{ } 35=\sqrt{ } 5$
$\sqrt{7}$
$\underline{20}=4 \sqrt{ } 5$
B1
$\sqrt{5}$
$\sqrt{20}+\frac{\sqrt{ } 35}{\sqrt{7}}-\frac{20}{\sqrt{5}}=-\sqrt{5} \quad$ (c.a.o.)
(b) $\frac{2+\sqrt{ } 3}{5+2 \sqrt{ } 3}=\frac{(2+\sqrt{ } 3)(5-2 \sqrt{ } 3)}{(5+2 \sqrt{ } 3)(5-2 \sqrt{ } 3)}$

Numerator: $\quad 10-4 \sqrt{3}+5 \sqrt{ } 3-2 \times 3$
B1
B1

B1

Denominator: $25-12$ A1
A1
$\frac{2+\sqrt{3}}{5+2 \sqrt{3}}=\frac{4+\sqrt{3}}{13} \quad$ (c.a.o.)
A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom
by $5+2 \sqrt{ } 3$
3. $\mathrm{d} y=4 x-10$
$\mathrm{d} x$
(an attempt to differentiate, at least one non-zero term correct) M1
An attempt to substitute $x=3$ in candidate's expression for $\underline{d} y$
Gradient of tangent at $P=2$
A1
Equation of tangent at $P: \quad y-4=2(x-3) \quad$ (or equivalent)
(f.t. candidate's value for $\frac{d y}{d x}$ provided both M1 and m 1 awarded)

A1
$\mathrm{d} x$
4. (a) $(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \quad$ (-1 for each error) (-1 for any subsequent 'simplification')
(b)
(i) $\quad\left(1+\frac{x}{2}\right)^{5} \approx 1^{5}+5\left(\frac{x}{2}\right) 1^{4}+\frac{5(5-1)}{2}\left(\frac{x}{2}\right)^{2} 1^{3}+\frac{5(5-1)(5-2)}{2 \times 3}\left(\frac{x}{2}\right)^{3} 1^{2}$

Two terms correct
B1
Other two terms correct
B1

$$
\left(1+\frac{x}{2}\right)^{5} \approx 1+\frac{5(x)}{2}+\frac{10(x)^{2}}{4}+\frac{10(x)^{3}}{8}
$$

(ii) An attempt to substitute $x=0.1$ in candidate's expression for

$$
\begin{aligned}
& (1+\underline{x})^{5} \\
& 1 \cdot 05^{5} \approx 1 \cdot 276(25)
\end{aligned}
$$

5. (a) An expression for $b^{2}-4 a c$, with $c= \pm k$ and at least one of a or b correct

$$
b^{2}-4 a c=2^{2}-4 \times 3 \times(-k)
$$

A1

$$
\text { Putting } b^{2}-4 a c>0 \quad \mathrm{~m} 1
$$

$$
4+12 k>0 \Rightarrow k>-1 / 3
$$

$$
\text { (f.t. only for } c=k \text { in original expression for } b^{2}-4 a c \text {) }
$$

(b) Finding critical points $x=-2, x=7$
$-2 \leq x \leq 7$ or $7 \geq x \geq-2$ or $[-2,7]$ or $x \leq 7$ and $-2 \leq x$ or a
correctly worded statement to the effect that x lies
between -2 and 7 (inclusive)
(f.t. candidate's critical points) B2

Note: $\quad-2<x<7$,

$$
\begin{aligned}
& x \leq 7,-2 \leq x \\
& x \leq 7-2 \leq x \\
& x \leq 7 \text { or }-2 \leq x \quad \text { all earn B1 }
\end{aligned}
$$

6. (a) $y+\delta y=3(x+\delta x)^{2}-4(x+\delta x)+7 \quad$ B1

Subtracting y from above to find δy M1
$\delta y=6 x \delta x+3(\delta x)^{2}-4 \delta x \quad$ A1
Dividing by δx and letting $\delta x \rightarrow 0$ M1
$\underline{\mathrm{d} y}=$ limit $\delta y=6 x-4 \quad$ (c.a.o.) A1
(b) Required derivative $=5 \times 1 / 2 \times x^{-1 / 2}-3 \times(-3) \times x^{-4} \quad$ B1, B1
7. $p=0.9$ B1

A convincing argument to show that the value 4 is correct B1
$x^{2}+1 \cdot 8 x-3 \cdot 19=0 \Rightarrow(x+0 \cdot 9)^{2}=4 \quad$ M1
$x=1 \cdot 1$
A1
$x=-2 \cdot 9$
A1
8. (a) Use of $f(-2)=-24 \quad$ M1
$-48+4 a+6-2=-24 \Rightarrow a=5$
A1
Special case
Candidates who assume $a=5$ and show $f(-2)=-24$ are awarded B1
(b) Attempting to find $f(r)=0$ for some value of r M1
$f(-1)=0 \Rightarrow x+1$ is a factor A1
$f(x)=(x+1)\left(6 x^{2}+a x+b\right)$ with one of a, b correct M1
$f(x)=(x+1)\left(6 x^{2}-x-2\right)$
A1
$f(x)=(x+1)(2 x+1)(3 x-2) \quad$ (f.t. only $6 x^{2}+x-2$ in above line)
A1

Special case

Candidates who find one of the remaining factors, $(2 x+1)$ or $(3 x-2)$, using e.g. factor theorem, are awarded
9. (a)

Concave up curve and minimum point $=(2, k)$ with $k<-1 \quad$ B1
Minimum point $=(2,-3)$
B1
Both points of intersection with x-axis
(b)

Concave up curve and y-coordinate of minimum $=-1 \quad$ B1
x-coordinate of minimum $=-3$
B1
Both points of intersection with x-axis B1
10. (a) $\quad \mathrm{d} y=3 x^{2}-12$
d x
Putting derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad$ M1
$d x$
$x=2,-2 \quad$ (both correct)
(f.t. candidate's $\underline{d y}$)

A1
$\mathrm{d} x$
Stationary points are $(2,-5)$ and $(-2,27) \quad$ (both correct) (c.a.o)
A1
A correct method for finding nature of stationary points
M1
$(-2,27)$ is a maximum point
(f.t. candidate's derived values)

A1
$(2,-5)$ is a minimum point
(f.t. candidate's derived values)

A1
(b)

Graph in shape of a positive cubic with two turning points M1
Correct marking of both stationary points
(f.t. candidate's derived maximum and minimum points)
(c) $k>27$

B1
$k<-5$

Special case

$k \geq 27, k \leq-5$ (both) awarded B1

