Mathematics C1

1.	(a)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$		M1
		increase in x Gradient of $AB = -\frac{1}{3}$	(or equivalent)	A1
	(b)	A correct method for finding the equation gradient for <i>AB</i> Equation of <i>AB</i> : $y-3 = -\frac{1}{3} [x-(-2)]$ Equation of <i>AB</i> : $x + 3y - 7 = 0$ Use of $m_{AB} \times m_{CD} = -1$ Equation of <i>CD</i> : $y-8 = 3(x-3)$ (or equiva (f.t. cano Special case: Verification of equation of <i>AB</i> by substitute <i>A</i> and <i>B</i> into the given equation] (or equivalent) (convincing) alent) didate's gradient of <i>AB</i>)	M1 A1 M1 A1 A1
	(c)	An attempt to solve equations of AB and $ax = 1, y = 2$ (con Special case Substituting (1, 2) in equations of both AB Convincing argument that coordinates of AB	vincing) (c.a.o.) B and <i>CD</i>	M1 A1 M1 A1
	(<i>d</i>)	A correct method for finding the mid-point $E(4, 1)$ A correct method for finding the length of $ED = \sqrt{10}$ (f.t. candidate		M1 A1 M1 A1
2.	(a)	$\sqrt{20} = 2\sqrt{5}$ $\frac{\sqrt{35}}{\sqrt{7}} = \sqrt{5}$ $\frac{20}{\sqrt{5}} = 4\sqrt{5}$		B1 B1 B1
		$\sqrt[3]{20} + \frac{\sqrt{35}}{\sqrt{7}} - \frac{20}{\sqrt{5}} = -\sqrt{5}$	(c.a.o.)	B1
	(b)	$\frac{2+\sqrt{3}}{5+2\sqrt{3}} = \frac{(2+\sqrt{3})(5-2\sqrt{3})}{(5+2\sqrt{3})(5-2\sqrt{3})}$		M1
		Numerator: $10 - 4\sqrt{3} + 5\sqrt{3} - 12$ Denominator: $25 - 12$	- 2 × 3	A1 A1
		$\frac{2 + \sqrt{3}}{5 + 2\sqrt{3}} = \frac{4 + \sqrt{3}}{13}$	(c.a.o.)	A1
		Special case If M1 not gained, allow B1 for correctly sin		

denominator following multiplication of top and bottom by 5 + $2\sqrt{3}$

3. $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 10$

(an attempt to differentiate, at least one non-zero term correct)	M1
An attempt to substitute $x = 3$ in candidate's expression for <u>dy</u>	m1
dx	

Gradient of tangent at P = 2 (c.a.o.) A1 Equation of tangent at P: y - 4 = 2(x - 3) (or equivalent) (f.t. candidate's value for dy provided both M1 and m1 awarded) A1 dx

4. (a)
$$(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
 (-1 for each error)
(-1 for any subsequent 'simplification') B2

(b) (i)
$$\begin{bmatrix} 1+x \\ 2 \end{bmatrix}^5 \approx 1^5 + 5 \begin{bmatrix} x \\ 2 \end{bmatrix} 1^4 + \frac{5(5-1)}{2} \begin{bmatrix} x \\ 2 \end{bmatrix}^2 1^3 + \frac{5(5-1)(5-2)}{2 \times 3} \begin{bmatrix} x \\ 2 \end{bmatrix}^3 1^2$$

Two terms correct B1
Other two terms correct B1
 $\begin{bmatrix} 1+x \\ 2 \end{bmatrix}^5 \approx 1 + \frac{5(x)}{2} + \frac{10(x)^2}{4} + \frac{10(x)^3}{8}$ B1
(ii) An attempt to substitute $x = 0.1$ in candidate's expression for
 $\begin{bmatrix} 1+x \\ 2 \end{bmatrix}^5 \approx 1.276(25)$ (c.a.o.) A1

5.	(a)	correct $b^2 - 4ac = 2$ Putting $b^2 - 2$	$^{2}-4 \times 3 \times (-k)$	$c = \pm k$ and at least one of <i>a</i> or <i>b</i>	M1 A1 m1
				original expression for $b^2 - 4ac$)	A1
	(b)	$-2 \le x \le 7$ o correctly wo		= 7 7] or <i>x</i> ≤ 7 and –2 ≤ <i>x</i> or a he effect that <i>x</i> lies	B1
		Note:	$-2 < x < 7, x \le 7, -2 \le x x \le 7, -2 \le x$	(f.t. candidate's critical points)	B2
			$x \le 7$ or $-2 \le x$	all earn B1	

6.	(a)	$y + \delta y = 3(x + \delta x)^2 - 4(x + \delta x) + 7$		B1
		Subtracting y from above to find δy		M1
		$\delta y = 6x\delta x + 3(\delta x)^2 - 4\delta x$		A1
		Dividing by δx and letting $\delta x \rightarrow 0$		M1
		$dy = \text{limit } \delta y = 6x - 4$	(c.a.o.)	A1
		$dx \stackrel{\delta x \to 0}{\longrightarrow} \delta x$		

(b) Required derivative =
$$5 \times \frac{1}{2} \times x^{-1/2} - 3 \times (-3) \times x^{-4}$$
 B1, B1

7.	p = 0.9	B1
	A convincing argument to show that the value 4 is correct	B1
	$x^{2} + 1.8x - 3.19 = 0 \Rightarrow (x + 0.9)^{2} = 4$	M1
	x = 1·1	A1
	x = -2.9	A1

8.	(a)	Use of $f(-2) = -24$	M1
		$-48 + 4a + 6 - 2 = -24 \Rightarrow a = 5$	A1

Special case

	Candidates who assume $a = 5$ and show $f(-2) = -24$ are awarded	B1
(b)	Attempting to find $f(r) = 0$ for some value of r	M1
	$f(-1) = 0 \Rightarrow x + 1$ is a factor	A1
	$f(x) = (x + 1)(6x^2 + ax + b)$ with one of a, b correct	M1
	$f(x) = (x+1)(6x^2 - x - 2)$	A1
	$f(x) = (x + 1)(2x + 1)(3x - 2)$ (f.t. only $6x^2 + x - 2$ in above line)	A1

Special case Candidates who find one of the remaining factors, (2x + 1) or (3x - 2), using e.g. factor theorem, are awarded B1 . (*a*)

Concave up curve and minimum point = $(2, k)$ with $k < -1$	B1
Minimum point = (2, -3)	B1
Both points of intersection with x-axis	B1

(b)

Concave up curve and y-coordinate of minimum = -1	B1
x-coordinate of minimum = -3	B1
Both points of intersection with x-axis	B1

 $dy = 3x^2 - 12$ 10. (a) Β1 dx Putting derived dy = 0M1 dx x = 2, -2(f.t. candidate's <u>dy</u>) (both correct) A1 dx Stationary points are (2, -5) and (-2, 27) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points M1 (-2, 27) is a maximum point (f.t. candidate's derived values) A1 (f.t. candidate's derived values) (2, -5) is a minimum point A1 (b) (-2, 27) 0 ►x (2, -5)

	Graph in shape of a positive cubic with two turning points	M1
	Correct marking of both stationary points (f.t. candidate's derived maximum and minimum points)	A1
(<i>c</i>)	k > 27	B1

Special case

 $k \ge 27$, $k \le -5$ (both) awarded B1