Mathematics M3

1.

(a) Use of $T=\frac{P}{v}$

$$
T=\frac{81 \times 1000}{v}
$$

si A1

Apply N2L
 to car dim correct equation M1

$T-R=m a$
$\frac{81000}{v}-90 v=720 \frac{\mathrm{~d} v}{\mathrm{~d} t}$
A1
Divide by 90 and multiply by v throughout

$$
900-v^{2}=8 v \frac{\mathrm{~d} v}{\mathrm{~d} t}
$$A1

(b) Attempt to separate variables

$$
\int \frac{8 v}{900-v^{2}} \mathrm{~d} v=\int \mathrm{d} t
$$

Integrating

$$
-4 \ln \left|900-v^{2}\right|=t+\mathrm{C}
$$

correct \ln term A1 all correct A1

$$
t=-4 \ln \left|900-v^{2}\right|-\mathrm{C}
$$

Required time $=\left[-\left.4 \ln \left|900-v^{2}\right|\right|_{5} ^{20}\right.$

$$
=4\left[\ln \left(\frac{900-25}{900-400}\right)\right]
$$

$$
=4\left[\ln \left(\frac{875}{500}\right)\right]
$$

$$
=4 \ln (1.75)
$$

$$
=2.24(\mathrm{~s})
$$

2. (a) At equilibrium $12 g=\frac{\lambda \times 0.05}{0.75} \quad$ use of Hook's Law M1

$$
\lambda=\underline{1764(N)}
$$

A1
(b) Consider a displacement x from the equilibrium position. Apply N2L $\quad 12 g-T=12 x$

M1

$$
12 g-\frac{\lambda(0 \cdot 05+x)}{0 \cdot 75}=12 x
$$

$$
x=-(14)^{2} x
$$

Therefore is SHM (with $\omega=14$).
A1
Amplitude $=\underline{0.05(\mathrm{~m})} \quad \mathrm{B} 1$
Period $=\frac{2 \pi}{\omega}=\frac{\pi}{7} \mathrm{~s}$
B1
(c) Maximum speed $=a \omega$
used M1

$$
\begin{aligned}
& =0.05 \times 14 \\
& =\underline{0.7\left(\mathrm{~ms}^{-1}\right)}
\end{aligned}
$$

$$
\mathrm{ft} a \mathrm{~A} 1
$$

(d) Use of $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with $\omega=14, a=0.05(\mathrm{c}), x=0.03$
$v^{2}=14^{2}\left(0.05^{2}-0.03^{2}\right)$
$\mathrm{ft} a \mathrm{~A} 1$
$=14^{2} \times 0.04^{2}$
$v=\underline{0.56\left(\mathrm{~ms}^{-1}\right)}$
cao A1
(e) Displacement from Origin $=x$

$$
x=(-) 0.05 \cos (14 t)
$$

When $t=1.6$

$$
\begin{array}{ll}
x=(-) 0.05 \cos (14 \times 1.6) & \text { ft } a \text { A1 } \\
x=(-) \underline{0.046(\mathrm{~m})} & \text { cao A1 }
\end{array}
$$

3. Auxiliary equation $4 \mathrm{~m}^{2}-12 \mathrm{~m}+9=0$

$$
(2 m-3)^{2}=0
$$

$$
\mathrm{m}=1.5 \text { (twice) }
$$

B1
Complementary function $x=(\mathrm{A}+\mathrm{B} t) \mathrm{e}^{1.5 t}$ ft B1

For PI, try $x=\mathrm{a} t+\mathrm{b}, \frac{\mathrm{d} x}{\mathrm{~d} t}=\mathrm{a}$
$-12 \mathrm{a}+9(\mathrm{a} t+\mathrm{b})=18 t-87$
$9 \mathrm{a}=18$
A1 $\mathrm{a}=2$
$-24+9 b=-87$
$\mathrm{b}=-7$
General solution $x=(\mathrm{A}+\mathrm{B} t) \mathrm{e}^{1.5 t}+2 t-7$
both A1

Use of initial conditions $t=0, x=5, \frac{\mathrm{~d} x}{\mathrm{~d} t}=10$ in general solution M1

$$
\begin{aligned}
& \mathrm{A}-7=5 \\
& \mathrm{~A}=12 \\
& \frac{\mathrm{~d} x}{\mathrm{~d} t}=(\mathrm{A}+\mathrm{B} t)(1.5) \mathrm{e}^{1.5 t}+\mathrm{Be}^{1.5 t}+2 \\
& 1.5 \mathrm{~A}+\mathrm{B}+2=10 \\
& \mathrm{~B}=-10
\end{aligned} \quad \begin{aligned}
x=(12-10 t) \mathrm{e}^{1.5 t}+2 t-7
\end{aligned}
$$

4. When the string jerks tight, each particle begins to move in direction $P Q$ with equal speeds v.

Just before jerk
$\cos \angle C P Q=\frac{1}{2}$
$\sin \angle C P Q=\frac{\sqrt{3}}{2}$
si B1

Use of impulse $=$ change in momentum
M1
Applied to $P \quad J=3 v \quad$ B1
Applied to $Q \quad J=5 \times 8 \sin 60^{\circ}-5 v$
A1
Attempt to solve simultaneously
m1

$$
\begin{aligned}
3 v & =40 \times \frac{\sqrt{3}}{2}-5 v \\
v & =\frac{5 \sqrt{3}}{2}=\underline{4.33\left(\mathrm{~ms}^{-1}\right)}
\end{aligned}
$$

cao A1

Speed of particle P is $4.33 \mathrm{~ms}^{-1}$.
Magnitude of impulsive tension $=J=3 v$

$$
=\frac{15 \sqrt{3}}{2}=\underline{12.99(\mathrm{Ns})} \quad \begin{array}{r}
\text { cao A1 } \\
\text { units B1 }
\end{array}
$$

Perpendicular to $P Q$, there is no impulse
Speed of particle Q perpendicular to $P Q=8 \cos 60^{\circ}=4 \mathrm{~ms}^{-1}$
Speed of particle $Q=\sqrt{4^{2}+\left(\frac{5 \sqrt{3}}{2}\right)^{2}}$

$$
=\underline{5.89 \mathrm{~ms}^{-1}}
$$

cao A1
5. (a) Use of N2L

$$
\begin{aligned}
150 g-10 v^{2} & =150 a \\
15 g-v^{2} & =15 v \frac{\mathrm{~d} v}{\mathrm{~d} s}
\end{aligned}
$$

(b) Attempt to separate variables

$$
\begin{aligned}
& \int \frac{15 v \mathrm{~d} v}{v^{2}-15 g}=-\int \mathrm{d} s \\
& \frac{15}{2} \ln \left|v^{2}-15 g\right|=-s(+C)
\end{aligned}
$$

Use of boundary conditions $s=0, v=30$
m1
cao A1
used M1
cao A1

M1
ft A1
cao A1
6.

(a) Use of Friction $=\mu \times$ Normal reaction si M1 $Q=0.3 S$

A1
Attempt at taking mom. about $B 4$ terms, dim correct equationM1

$$
\begin{array}{rlr}
20 g \times 2.5 \sin \theta+80 g \times 3 \sin \theta & =4 S+3 Q & -1 \text { each error A2 } \\
294+1411.2 & =4 S+0.9 S & \\
4.9 S & =1705.2 & \\
S & =\underline{348(\mathrm{~N})} & \text { cao A1 }
\end{array}
$$

(b) Resolve vertically

$$
\begin{aligned}
Q+R & =80 g+20 g \\
R & =100 g-0.3 \times 348 \\
R & =875.6 \mathrm{~N}
\end{aligned}
$$

4 terms, dim correct M1
A1

Resolve horizontally

$$
F=S(=348)
$$

B1

Use of

$$
\begin{aligned}
& F \leq \mu R \\
& \mu \geq \frac{348}{875 \cdot 6}=0 \cdot 39744
\end{aligned}
$$

M1

$$
\mu \geq \underline{0.397}
$$

cao A1

