MATHEMATICS M1

1.(a) Using $v^{2}=u^{2}+2 a s$ with $v=0, u=10.5, a=(-) 9.8$
$0=10.5^{2}-2 \times 9.8 S$
$s=\underline{5.625 \mathrm{~m}}$
1.(b) Using $s=u t+0.5 a t^{2}$ with $t=5, u=10.5, a=(-) 9.8$
$s=10.5 \times 5-0.5 \times 9.8 \times 5^{2}$
$s=-70$
Height of cliff is 70 m
2.(a) $T=\underline{30 g}=(\underline{294} \mathrm{~N})$

B1
2.(b)

B1

2.(c) Resolve 'horizontally' to obtain equation
$T_{1} \sin 45^{\circ}=T_{2} \sin 60^{\circ}$
A1 B1
$\frac{T_{1}}{\sqrt{2}}=T_{2} \sqrt{\frac{3}{2}}$
Resolve 'vertically' to obtain equation
M1
$T_{1} \cos 45^{\circ}+T_{2} \cos 60^{\circ}=294$ A1
$T_{2} \sqrt{\frac{3}{2}} \frac{1}{\sqrt{2}}+\frac{1}{2} T_{2}=294$ m1
$(1+\sqrt{ } 3) T_{2}=294 \times 2$
$T_{2}=215.223=215 \mathrm{~N}$
cao A1
$T_{1}=215.223 \times \sqrt{\frac{3}{2}}=264 \mathrm{~N}$
cao A1
3.(a)

N2L

$$
\begin{aligned}
& 5600 g-T=5600 a \\
& a=\frac{5600 \times 9.8-50400}{5600} \\
& a=0.8 \mathrm{~ms}^{-2}
\end{aligned}
$$

dim. correct M1
3.(b) Using $V=u+a t$ with $u=0, a=0.8, t=8$
$V=0.8 \times 8$
$V=6.4 \mathrm{~ms}^{-1}$
3.(c)

M1 A1 A1
3.(d) Distance $S=$ area under graph
$S=0.5(25+40) \times 6.4$
any correct area
3.(e)

We require $a=-\frac{6.4}{(40-8-25)}=-\frac{6.4}{7}$
Therefore Max $T=5600\left(9.8+\frac{6.4}{7}\right)$
$\operatorname{Max} T=\underline{60000 \mathrm{~N}}$
4.

$$
\begin{array}{ll}
\text { N2L applied to } B & \text { M1 } \\
& 9 g-T=9 a \\
\text { N2L applied to } A, \text { weight resolved } & \mathrm{A} 1 \\
& T-5 g \sin \alpha=5 a \\
\text { Adding } & 9 g-5 \times 0.21 g=14 a \\
& \text { M1 } \\
& a=\frac{7.95 \times 9.8}{14}=\underline{5.565 \mathrm{~ms}^{-2}} \\
& \mathrm{~m} 1 \\
& T=9(9.8-5.565)=\underline{38.115 \mathrm{~N}}
\end{array}
$$M1M1

$$
\mathrm{ml}
$$

5.(a) Using $v^{2}=u^{2}+2$ as with $v=0, u=9, s=75$
$0=9^{2}+2 \times 75 a$
$a=\underline{-0.54 \mathrm{~ms}^{-1}}$
5.(b) Using $s=0.5(u+v) t$ with $v=0, u=9, s=75$
$75=0.5(0+9) t$
A1
$t=16 \frac{2}{3}$
A1
5.(c) $\begin{aligned} R & =80 g=(784 \mathrm{~N}) & & \text { B1 } \\ F & =80 \times 0.54=(43.2 \mathrm{~N}) & & \text { M1 A1 } \\ \mu & =\frac{F}{R}=\underline{0.055} \text { (to 2 sig.figs.) } & & \text { M1 A1 }\end{aligned}$
6.

(a) $\quad I=2(6+4)$
$I=\underline{20 \mathrm{Ns}}$
(b) Conservation of momentum

$$
12+5 u=-8+5 v
$$

A1

$$
v-u=4
$$

Restitution
M1
$v+4=-0.75(u-6)$
$4 v+3 u=2$
Solving simultaneously m1
$4 v-4 u=16$
$4 v+3 u=2$
$7 u=-14$
$u=\underline{-2 \mathrm{~ms}^{-1}} \quad$ cao A1
$v=2 \mathrm{~ms}^{-1}$
cao A1
8.

(a) Moment about P all forces, dim cor eq.
$40 g \times 0.8+70 g \times 2.3=R_{Q} \times 1.4$
M1
A1 B1
A1
Resolve vertically $\quad R_{P}+R_{Q}=45 g+40 g+70 g$ $R_{P}=\underline{168 \mathrm{~N}}$

M1
A1
(b) If A leaves the bench, the bench would tip about Q as it cannot remain in equilibrium with B at end Y. This is because clockwise moment is greater then anti-clockwise moment.

B1 R1
8.

(a)

Area
from $A B(x)$
from $A E(y)$

$A B C D$	81	4.5	4.5	B 1
$C D E$	27	$3+6 \times 2 / 3$	$9 \times 1 / 3$	B 1
$A B C E$	54	\bar{x}	\bar{y}	

Moments about $A B$

$$
\begin{aligned}
& 81 \times 4.5=27 \times 7+54 \bar{x} \\
& \bar{x}=\underline{3.25 \mathrm{~cm}}
\end{aligned}
$$

Moments about $A E$

$$
\begin{aligned}
& 81 \times 4.5=27 \times 3+54 \bar{y} \\
& \bar{y}=\underline{5.25 \mathrm{~cm}}
\end{aligned}
$$

(b) $\quad \theta=\tan ^{-1}\left(\frac{9-\bar{y}}{9-\bar{x}}\right)$
correct triangle
$\theta=\tan ^{-1}\left(\frac{15}{23}\right)$
ft x, y A1
$\theta=33.1^{\circ}$
ft x, y
A1

