Mathematics M1 (June 2009) Final Markscheme

1.(a) Using $v=u+a t$ with $u=14.7, a=(-) 9.8, t=2$. M1
$v=14.7-9.8 \times 2$ A1
$v=-4.9$
Speed $=\underline{4.9 \mathrm{~ms}^{-1}}$
1.(b) Using $v^{2}=u^{2}+2 a s$ with $u=14.7, a=(-) 9.8, s=(-) 70.2$. M1
$v^{2}=14.7^{2}+2 \times(-9.8) \times(-70.2) \quad \mathrm{A} 1$
$v=\underline{39.9 \mathrm{~ms}^{-1}}$ cao A1
1.(c) Using $s=u t+\frac{1}{2} a t^{2}$ with $u=14.7, a=(-) 9.8, s=3.969$.
$3.969=14.7 t-\frac{1}{2} \times 9 \cdot 8 \times t^{2}$
$t^{2}-3 t+0.81=0 \quad$ attempt to solve m 1
$(t-0.3)(t-2.7)=0$

$$
t=0.3,2.7
$$

Therefore required length of time $=2.7-0.3$
$=\underline{2.4 \mathrm{~s}}$ cao
2.(a) N2L

$$
\begin{aligned}
& 5 g-T=5 a \\
& T-2 g=2 a
\end{aligned}
$$

dim. correct
M1 A1
dim. correct
Adding

$$
\begin{aligned}
3 g & =7 a & & \mathrm{~m} 1 \\
a & =\underline{3 g / 7}=\left(\underline{4.2) \mathrm{ms}^{-2}}\right. & \text { cao } & \mathrm{A} 1 \\
T & =2 \times 9.8+2 \times 4.2 & & \\
& =\underline{28 \mathrm{~N}} & \text { cao } & \mathrm{A} 1
\end{aligned}
$$

2.(b) Magnitude of acceleration of objects A and B are equal.
3.(a) N2L applied to lift and person $900 g-T=900 a$ dim corr. M1 $900 \times 9.8-8550=900 a \quad$ A1 $a=\underline{0.3 \mathrm{~ms}^{-2}}$ cao A 1
3.(b) N2L applied to person

$$
\begin{array}{lll}
65 g-R=65 a & & \text { M1 } \\
R=65(9.8-0.3) & & \text { A1 } \\
R=\underline{617.5 \mathrm{~N}} & \mathrm{ft} \mathrm{c} \text { 's } a & \text { A1 }
\end{array}
$$

4.(a) At $t=10$, acceleration $=\frac{20-5}{30}$

$$
\begin{array}{lll}
=\underline{0.5 \mathrm{~ms}^{-2}} & \text { cao } & \text { A1 } \\
\mathrm{n}=\underline{0} & & \text { B1 }
\end{array}
$$

4.(b) Using $v=u+a t$ with $u=5 t=20, a=0.5$ (c).
$v=5+0.5 \times 20$
$v=\underline{15 \mathrm{~ms}^{-1}} \quad \mathrm{ft}$ acce if >0
4.(c) Distance $=\frac{1}{2}(5+20) \times 30+20 \times 400+\frac{1}{2} \times 20 \times 50 \quad$ method for distance M1 any correct area B1

Distance $=\underline{8875 \mathrm{~m}}$ correct expression A1 cao A1
5.

6.

7.

8. Resolve in one direction to obtain component of resultant

$$
\begin{aligned}
& X=7 \cos 30^{\circ}-2 \cos 60^{\circ}-5 \cos 50^{\circ} \\
& X=1.8482
\end{aligned}
$$

Resolve in perpendicular direction M1
$Y=5 \cos 40^{\circ}+7 \cos 60^{\circ}-2 \cos 30^{\circ} \quad \mathrm{A} 1$ $Y=5.5982$

Resultant $^{2}=1.8482^{2}+5.5982^{2} \quad \mathrm{ml}$

A1

9.(a)	Area	from $A E$	from $A B$
Square	36	3	3
Triangle	12	3	$6+\frac{4}{3}=\frac{22}{3}$
The sign	48	x	y

B1 B1 B1
Distance of centre of mass from $A E=x=\underline{3} \quad$ B1
Moments about $A B \quad$ M1

$$
\begin{array}{rlrl}
48 y & =12 \times \frac{22}{3}+36 \times 3 & \mathrm{ft} \text { areas, } y^{\prime} \mathrm{s} & \mathrm{~A} 1 \\
y & =\frac{49}{12}=\underline{4.083 \mathrm{~cm}} & \mathrm{cao} & \mathrm{Al}
\end{array}
$$

(b) $\begin{array}{lll}\tan \theta & =\frac{3}{\frac{49}{12}} & \mathrm{ft} x, y \\ & & \text { M1 A1 } \\ \theta=\underline{36.3^{\circ}} & \mathrm{ft} x, y & \mathrm{~A} 1\end{array} ~$

