MATHEMATICS M1

1. (a) Using $v=u+a t$ with $u=5, a=0.6, t=25$
$v=5+0.6 \times 25$
$v=20 \mathrm{~ms}^{-1}$
(b)

(c) Using $v=u+a t$ with $u=20, v=0, t=30$
$a=-\frac{20}{30}$
magnification of deceleration $=-\frac{2}{3}$
$\mathrm{ft}(\mathrm{a})$
(d) \quad Distance $=$ Area under graph
used
Distance $=0.5(5+20) 25+20(690-25)+0.5(20)(30)$
Distance $=\underline{13912.5 \mathrm{~m}}$
2. (a) Using $s=u t+0.5 a t^{2}$ with $s=(-) 1.75, a=(-) 9.8, t=2.5$
$-1.75=25 u-4.9 \times 2.5^{2}$
$u=\underline{11.55 \mathrm{~ms}^{-1}}$
A1
(b) Using $v^{2}=u^{2}+2$ as with $v=0, u=11.55(\mathrm{c}), a=(-) 9.8$
$0=11.55^{2}-2 \times 9.8 s$
$s=6.80625$
Therefore greatest height above ground $=6.80625+1.75$

$$
=\underline{8.55625 \mathrm{~m}} \quad \text { cao }
$$

(c) Using $v=u+a t$ with $u=11.55(\mathrm{c}), a=(-) 9.8, t=2.5$
$v=11.55-9.8 \times 2.5$
$v=-12.95 \mathrm{~ms}^{-1}$
Therefore speed $=\underline{12.95 \mathrm{~ms}^{-1} \quad \text { cao }}$
(d) Speed after bounce $=0.8 \times 12.95$

$$
=\underline{10.36 \mathrm{~ms}^{-1}} \quad \mathrm{ft}(\mathrm{c})
$$

3.

Resolve in any direction.
$T \cos \theta+50 \sin 30^{\circ}=40+60 \cos 80^{\circ}$

$$
\begin{aligned}
T \cos \theta & =40-25+60 \cos 80^{\circ} \\
& =15+60 \cos 80^{\circ}
\end{aligned}
$$

Resolve in a direction to obtain independent equation
$T \sin \theta=50 \cos 30^{\circ}+60 \cos 10^{\circ}$
sensible attempt to eliminate variable.
$\tan \theta=\frac{50 \cos 30^{\circ}+60 \cos 10^{\circ}}{15+60 \cos 80^{\circ}}$
$\theta=\underline{76.06^{\circ}}$
cao
$T=\sqrt{\left(15+60 \cos 80^{\circ}\right)^{2}+\left(50 \cos 30^{\circ}+60 \cos 10^{\circ}\right)^{2}}$
$T=\underline{105.5 \mathrm{~N}}$
cao
A1
4.

(a) $\begin{array}{lrl}\text { Apply N2L to } B & & \mathrm{M} 1 \\ 6 g-T=6 a & \mathrm{~A} 1 \\ \text { Apply N2L to } A & & \mathrm{M} 1 \\ T-8 g \sin 25^{\circ}=8 a & & \mathrm{~A} 1 \\ \text { Adding } 6 g-8 g \sin 25^{\circ} & =14 a & \\ a & =1.4 \mathrm{~ms}^{-2} & \mathrm{cao} \\ T & =6(g-a) & \mathrm{A} 1 \\ T & =\underline{50.4 \mathrm{~N}} & \mathrm{cao}\end{array}$
(b) Magnitude of acceleration of A and B are equal.
5.

(a) Conservation of momentum M1

$$
49 \times 1.6-56 \times 0.9=49 \times 0.24+56 v
$$

$$
v=\underline{0.29} \quad \text { convincing }
$$

(b) Restitution M1

$$
0.29-0.24=-\mathrm{e}(-0.9-1.6)
$$

$$
\mathrm{e}=\frac{0.05}{2.5}=0.02
$$

(c) $\quad|I|=56(0.29+0.9)$

$$
=\underline{66.64 \mathrm{Ns}}
$$

(d) Objects are modelled as particles.
6.

Resolve vertically
all forces, dim. correct
$R \cos \alpha=0.8 g+F \sin \alpha$

$$
\begin{aligned}
F & =0 R \\
0.8 R & =0.8 g+0.4 R \times 0.6
\end{aligned}
$$

$$
R=14 \mathrm{~N} \quad \text { substitution of } F
$$

Resolve horizontally

all forces, dim. CorrectM1 A1
$14 \times 0.6+0.4 \times 14 \times 0.8=T$
$T=\underline{12.88 \mathrm{~N}}$
elimination of variable
cao
7.

Moments about Y	all forces	M1
$0.3 R_{X}=0.2 \times 8 g+1 \times 5 g$		A1 B1
$R_{X}=22 g$	cao	A1
$R_{X}=\underline{215.6 \mathrm{~N}}$		M 1
Resolve vertically		A 1
$R_{Y}=R_{X}+8 g+5 g$	$\mathrm{ft} R_{X}$ only	A 1

8. (a)
Particle mass from $A C$ from $A B$

P	2 m	7.5	0	B1
Q	3 m	2.4	4.2	B1
R	5 m	0	3.5	B1

(i) Moments about $A C$ equation M1

$$
\begin{array}{lll}
10 \bar{x}=7.5 \times 2+2.4 \times 3+0 \times 5 & \mathrm{ft} & \mathrm{~A} 1 \\
10 \bar{x}=22.2 & & \\
\bar{x}=\underline{2.22 \mathrm{~cm}} & \text { cao } & \text { A1 }
\end{array}
$$

(ii) Moments about $A B$ M1

$10 \bar{y}=0 \times 2+4.2 \times 3+3.5 \times 5$	ft	A 1
$10 \bar{y}=30.1$		
$\bar{y}=\underline{3.01 \mathrm{~cm}}$	cao	A 1

(b) $\quad \theta=\tan ^{-1}\left(\frac{3.01}{8-2.22}\right)$
ft

$$
\theta=\underline{27.51^{\circ}}
$$

ft

